- Browse by Subject
Browsing by Subject "databases"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Computational integration and meta-analysis of abandoned cardio-(vascular/renal/metabolic) therapeutics discontinued during clinical trials from 2011 to 2022(Frontiers, 2023-02) Zeng, Carisa; Lee, Yoon Seo; Szatrowski, Austin; Mero, Deniel; Khomtchouk, Bohdan B.; Biohealth Informatics, School of Informatics and ComputingCardiovascular/renal/metabolic (CVRM) diseases collectively comprise the leading cause of death worldwide and disproportionally affect older demographics and historically underrepresented minority populations. Despite these critical unmet needs, pharmaceutical research and development (R&D) efforts have historically struggled with high drug failure rates, low approval rates, and other challenges. Drug repurposing is one approach to recovering R&D costs and meeting unmet demands in therapeutic markets. While there are multiple approaches to conducting drug repurposing, we recognize the importance of bringing together and consolidating discontinued drug information to help identify prospective repurposing candidates. In this study, we have harmonized and integrated information on all relevant CVRM drug assets from U.S. Securities and Exchange Commission (SEC) filings, clinical trial records, PharmGKB, Open Targets, and other platforms. A list of existing therapeutics discontinued or shelved by pharmaceutical/biotechnology companies in 2011-2022 were manually curated and interpreted for insights using information on each drug's genetic target, mechanism of action (MOA), clinical indication, and R&D information including highest phase of clinical development, year of discontinuation, previous repurposing attempts (if any), and other actionable metadata. This study also summarizes the profiles of CVRM drugs discontinued within the past decade and identifies the limitations of publicly available information on discontinued drug assets. The constructed database could serve as a tool for identifying candidates for drug repurposing and developing query methods for collecting R&D information.Item Integrative Computational Genomics Based Approaches to Uncover the Tissue-Specific Regulatory Networks in Development and Disease(2020-03) Srivastava, Rajneesh; Janga, Sarath Chandra; Liu, Xiaowen; Marrs, James A.; Kaplan, Mark H.Regulatory protein families such as transcription factors (TFs) and RNA Binding Proteins (RBPs) are increasingly being appreciated for their role in regulating the respective targeted genomic/transcriptomic elements resulting in dynamic transcriptional (TRNs) and post-transcriptional regulatory networks (PTRNs) in higher eukaryotes. The mechanistic understanding of these two regulatory network types require a high resolution tissue-specific functional annotation of both the proteins as well as their target sites. This dissertation addresses the need to uncover the tissue-specific regulatory networks in development and disease. This work establishes multiple computational genomics based approaches to further enhance our understanding of regulatory circuits and decipher the associated mechanisms at several layers of biological processes. This study potentially contributes to the research community by providing valuable resources including novel methods, web interfaces and software which transforms our ability to build high-quality regulatory binding maps of RBPs and TFs in a tissue specific manner using multi-omics datasets. The study deciphered the broad spectrum of temporal and evolutionary dynamics of the transcriptome and their regulation at transcriptional and post transcriptional levels. It also advances our ability to functionally annotate hundreds of RBPs and their RNA binding sites across tissues in the human genome which help in decoding the role of RBPs in the context of disease phenotype, networks, and pathways. The approaches developed in this dissertation is scalable and adaptable to further investigate the tissue specific regulators in any biological systems. Overall, this study contributes towards accelerating the progress in molecular diagnostics and drug target identification using regulatory network analysis method in disease and pathophysiology.Item Subject Specific Databases(2019-11-13) Piper, Gemmicka