- Browse by Subject
Browsing by Subject "cryptography"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Internet of Things Security Using Proactive WPA/WPA2(2016-04-05) Kamoona, Mustafa; El-Sharkawy, Mohamed A.; King, Brian; Rizkalla, MaherThe Internet of Things (IoT) is a natural evolution of the Internet and is becoming more and more ubiquitous in our everyday home, enterprise, healthcare, education, and many other aspects. The data gathered and processed by IoT networks might be sensitive and that calls for feasible and adequate security measures. The work in this thesis describes the use of the Wi-Fi technology in the IoT connectivity, then proposes a new approach, the Proactive Wireless Protected Access (PWPA), to protect the access networks. Then a new end to end (e2e) IoT security model is suggested to include the PWPA scheme. To evaluate the solutions security and performance, rstly, the cybersecurity triad: con dentiality, integrity, and availability aspects were discussed, secondly, the solutions performance was compared to a counterpart e2e security solution, the Secure Socket Layer security. A small e2e IoT network was set up to simulate a real environment that uses HTTP protocol. Packets were then collected and analyzed. Data analysis showed a bandwidth e ciency increase by 2% (Internet links) and 12% (access network), and by 344% (Internet links) and 373% (access network) when using persistent and non-persistent HTTP respectively. On the other hand, the analysis showed a reduction in the average request-response delay of 25% and 53% when using persistent and non-persistent HTTP respectively. This scheme is possibly a simple and feasible solution that improves the IoT network security performance by reducing the redundancy in the TCP/IP layers security implementation.Item Investigation of Malicious Portable Executable File Detection on the Network using Supervised Learning Techniques(IEEE, 2017-05) Vyas, Rushabh; Luo, Xiao; McFarland, Nichole; Justice, Connie; Computer Information and Graphics Technology, School of Engineering and TechnologyMalware continues to be a critical concern for everyone from home users to enterprises. Today, most devices are connected through networks to the Internet. Therefore, malicious code can easily and rapidly spread. The objective of this paper is to examine how malicious portable executable (PE) files can be detected on the network by utilizing machine learning algorithms. The efficiency and effectiveness of the network detection rely on the number of features and the learning algorithms. In this work, we examined 28 features extracted from metadata, packing, imported DLLs and functions of four different types of PE files for malware detection. The returned results showed that the proposed system can achieve 98.7% detection rates, 1.8% false positive rate, and with an average scanning speed of 0.5 seconds per file in our testing environment.Item Secure Digital Provenance: Challenges and a New Design(2014) Rangwala, Mohammed M.; Zou, Xukai, 1963-; Li, Feng; Raje, Rajeev; Fang, ShiaofenDerived from the field of art curation, digital provenance is an unforgeable record of a digital object's chain of successive custody and sequence of operations performed on the object. It plays an important role in accessing the trustworthiness of the object, verifying its reliability and conducting audit trails of its lineage. Digital provenance forms an immutable directed acyclic graph (DAG) structure. Since history of an object cannot be changed, once a provenance chain has been created it must be protected in order to guarantee its reliability. Provenance can face attacks against the integrity of records and the confidentiality of user information, making security an important trait required for digital provenance. The digital object and its associated provenance can have different security requirements, and this makes the security of provenance different from that of traditional data. Research on digital provenance has primarily focused on provenance generation, storage and management frameworks in different fields. Security of digital provenance has also gained attention in recent years, particularly as more and more data is migrated in cloud environments which are distributed and are not under the complete control of data owners. However, there still lacks a viable secure digital provenance scheme which can provide comprehensive security for digital provenance, particularly for generic and dynamic ones. In this work, we address two important aspects of secure digital provenance that have not been investigated thoroughly in existing works: 1) capturing the DAG structure of provenance and 2) supporting dynamic information sharing. We propose a scheme that uses signature-based mutual agreements between successive users to clearly delineate the transition of responsibility of the digital object as it is passed along the chain of users. In addition to preserving the properties of confidentiality, immutability and availability for a digital provenance chain, it supports the representation of DAG structures of provenance. Our scheme supports dynamic information sharing scenarios where the sequence of users who have custody of the document is not predetermined. Security analysis and empirical results indicate that our scheme improves the security of the typical secure provenance schemes with comparable performance.