- Browse by Subject
Browsing by Subject "cover crop"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item No-till is challenged: Complementary management is crucial to improve its environmental benefits under a changing climate(Elsevier, 2020-09) Daryanto, Stefani; Wang, Lixin; Jacinthe, Pierre-André; Earth Sciences, School of ScienceTillage is the most common agricultural practice dating back to the origin of agriculture. In recent decades, no-tillage (NT) has been introduced to improve soil and water quality. However, changes in soil properties resulting from long-term NT can increase losses of dissolved phosphorus, nitrate and some classes of pesticides, and NT effect on nitrous oxide (N2O) emission remains controversial. Complementary management that enhances the overall environmental benefits of NT is therefore crucial. By incorporating cover crops, nutrient cycling and nutrient use efficiency in NT fields could be improved given the nutrient supplying capacity of some cover crops. Cover crops could also offset the need for occasional tillage of NT cropland, an operation whose effect is only temporary in reducing, for example, soil compaction associated with NT management. When used in combination with NT, cover crop termination methods, using agrochemicals, should be carefully considered to prevent further jeopardy to water quality. Compared to herbicides, the use of roller crimping could potentially result in production cost saving while minimizing soil disturbance and export of agrochemicals. Future research should focus on various combinations of cover crop traits (e.g., decomposition rate) and management (e.g., timing of cover crop termination) that account for site- and cash crop-specific requirements.Item Responses of soil carbon sequestration to climate smart agriculture practices: A meta‐analysis(Wiley, 2019) Bai, Xiongxiong; Huang, Yawen; Ren, Wei; Coyne, Mark; Jacinthe, Pierre-André; Tao, Bo; Hui, Dafeng; Yang, Jian; Matocha, Chris; Earth Sciences, School of ScienceClimate‐smart agriculture (CSA) management practices (e.g., conservation tillage, cover crops, and biochar applications) have been widely adopted to enhance soil organic carbon (SOC) sequestration and to reduce greenhouse gas emissions while ensuring crop productivity. However, current measurements regarding the influences of CSA management practices on SOC sequestration diverge widely, making it difficult to derive conclusions about individual and combined CSA management effects and bringing large uncertainties in quantifying the potential of the agricultural sector to mitigate climate change. We conducted a meta‐analysis of 3,049 paired measurements from 417 peer‐reviewed articles to examine the effects of three common CSA management practices on SOC sequestration as well as the environmental controlling factors. We found that, on average, biochar applications represented the most effective approach for increasing SOC content (39%), followed by cover crops (6%) and conservation tillage (5%). Further analysis suggested that the effects of CSA management practices were more pronounced in areas with relatively warmer climates or lower nitrogen fertilizer inputs. Our meta‐analysis demonstrated that, through adopting CSA practices, cropland could be an improved carbon sink. We also highlight the importance of considering local environmental factors (e.g., climate and soil conditions and their combination with other management practices) in identifying appropriate CSA practices for mitigating greenhouse gas emissions while ensuring crop productivity.