ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "correlation filter"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Feature Distilled Tracking
    (IEEE, 2017-12) Zhu, Guibo; Wang, Jinqiao; Wang, Peisong; Wu, Yi; Lu, Hanqing; Medicine, School of Medicine
    Feature extraction and representation is one of the most important components for fast, accurate, and robust visual tracking. Very deep convolutional neural networks (CNNs) provide effective tools for feature extraction with good generalization ability. However, extracting features using very deep CNN models needs high performance hardware due to its large computation complexity, which prohibits its extensions in real-time applications. To alleviate this problem, we aim at obtaining small and fast-to-execute shallow models based on model compression for visual tracking. Specifically, we propose a small feature distilled network (FDN) for tracking by imitating the intermediate representations of a much deeper network. The FDN extracts rich visual features with higher speed than the original deeper network. To further speed-up, we introduce a shift-and-stitch method to reduce the arithmetic operations, while preserving the spatial resolution of the distilled feature maps unchanged. Finally, a scale adaptive discriminative correlation filter is learned on the distilled feature for visual tracking to handle scale variation of the target. Comprehensive experimental results on object tracking benchmark datasets show that the proposed approach achieves 5x speed-up with competitive performance to the state-of-the-art deep trackers.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University