ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "coronary artery disease"

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    CAD-LT score effectively predicts risk of significant coronary artery disease in liver transplant candidates
    (Elsevier, 2021-07) Rachwan, Rayan Jo; Kutkut, Issa; Timsina, Lava R.; Chaaya, Rody G. Bou; El-Am, Edward A.; Sabra, Mohammad; Mshelbwala, Fakilahyel S.; Rahal, Mahmoud A.; Lacerda, Marco A.; Kubal, Chandrashekhar A.; Fridell, Jonathan A.; Ghabril, Marwan S.; Bourdillon, Patrick D.; Mangus, Richard S.; Surgery, School of Medicine
    Background & Aims Patients with cirrhosis and significant coronary artery disease (CAD) are at risk of peri-liver transplantation (LT) cardiac events. The coronary artery disease in liver transplantation (CAD-LT) score and algorithm aim to predict the risk of significant CAD in LT candidates and guide pre-LT cardiac evaluation. Methods Patients who underwent pre-LT evaluation at Indiana University (2010-2019) were studied retrospectively. Stress echocardiography (SE) and cardiac catheterization (CATH) reports were reviewed. CATH was performed for predefined CAD risk factors, irrespective of normal SE. Significant CAD was defined as CAD requiring percutaneous or surgical intervention. A multivariate regression model was constructed to assess risk factors. Receiver-operating curve analysis was used to compute a point-based risk score and a stratified testing algorithm. Results A total of 1,771 pre-LT patients underwent cardiac evaluation, including results from 1,634 SE and 1,266 CATH assessments. Risk-adjusted predictors of significant CAD at CATH were older age (adjusted odds ratio 1.05; 95% CI 1.03–1.08), male sex (1.69; 1.16–2.50), diabetes (1.57; 1.12–2.22), hypertension (1.61; 1.14–2.28), tobacco use (pack years) (1.01; 1.00–1.02), family history of CAD (1.63; 1.16–2.28), and personal history of CAD (6.55; 4.33–9.90). The CAD-LT score stratified significant CAD risk as low (≤2%), intermediate (3% to 9%), and high (≥10%). Among patients who underwent CATH, a risk-based testing algorithm (low: no testing; intermediate: non-invasive testing vs. CATH; high: CATH) would have identified 97% of all significant CAD and potentially avoided unnecessary testing (669 SE [57%] and 561 CATH [44%]). Conclusions The CAD-LT score and algorithm (available at www.cad-lt.com) effectively stratify pre-LT risk for significant CAD. This may guide more targeted testing of candidates with fewer tests and faster time to waitlist. Lay summary The coronary artery disease in liver transplantation (CAD-LT) score and algorithm effectively stratify patients based on their risk of significant coronary artery disease. The CAD-LT algorithm can be used to guide a more targeted cardiac evaluation prior to liver transplantation.
  • Loading...
    Thumbnail Image
    Item
    Coronary artery disease progression and calcification in metabolic syndrome
    (2014) McKenney, Mikaela Lee; Sturek, Michael Stephen; Evans-Molina, Carmella; Moe, Sharon M.; Tune, Johnathan D.
    For years, the leading killer of Americans has been coronary artery disease (CAD), which has a strong correlation to the U.S. obesity epidemic. Obesity, along with the presence of other risk factors including hyperglycemia, hypercholesterolemia, dyslipidemia, and high blood pressure, comprise of the diagnosis of metabolic syndrome (MetS). The presentation of multiple MetS risk factors increases a patients risk for adverse cardiovascular events. CAD is a complex progressive disease. We utilized the superb model of CAD and MetS, the Ossabaw miniature swine, to investigate underlying mechanisms of CAD progression. We studied the influence of coronary epicardial adipose tissue (cEAT) and coronary smooth muscle cell (CSM) intracellular Ca2+ regulation on CAD progression. By surgical excision of cEAT from MetS Ossabaw, we observed an attenuation of CAD progression. This finding provides evidence for a link between local cEAT and CAD progression. Intracellular Ca2+ is a tightly regulated messenger in CSM that initiates contraction, translation, proliferation and migration. When regulation is lost, CSM dedifferentiate from their mature, contractile phenotype found in the healthy vascular wall to a synthetic, proliferative phenotype. Synthetic CSM are found in intimal plaque of CAD patients. We investigated the changes in intracellular Ca2+ signaling in enzymatically isolated CSM from Ossabaw swine with varying stages of CAD using the fluorescent Ca2+ indicator, fura-2. This time course study revealed heightened Ca2+ signaling in early CAD followed by a significant drop off in late stage calcified plaque. Coronary artery calcification (CAC) is a result of dedifferentiation into an osteogenic CSM that secretes hydroxyapatite in the extracellular matrix. CAC is clinically detected by computed tomography (CT). Microcalcifications have been linked to plaque instability/rupture and cannot be detected by CT. We used 18F-NaF positron emission tomography (PET) to detect CAC in Ossabaw swine with early stage CAD shown by mild neointimal thickening. This study validated 18F-NaF PET as a diagnostic tool for early, molecular CAC at a stage prior to lesions detectable by CT. This is the first report showing non-invasive PET resolution of CAC and CSMC Ca2+ dysfunction at an early stage previously only characterized by invasive cellular Ca2+ imaging.
  • Loading...
    Thumbnail Image
    Item
    Optimal Management of Malignant Polyps, From Endoscopic Assessment and Resection to Decisions About Surgery
    (Elsevier, 2018) Kanuri, Sri H.; Ipe, Joseph; Kassab, Kameel; Gao, Hongyu; Liu, Yunlong; Skaar, Todd C.; Kreutz, Rolf P.; Medicine, School of Medicine
    Background: Variation in micro-RNA (miRNA) levels in blood has been associated with alterations of physiological functions of the cardiovascular system. Circulating miRNA have the potential to become reliable biomarkers for risk stratification and early detection of cardiovascular events. Recurrent thrombotic events in patients with established coronary artery disease (CAD) demonstrate the need for personalized approaches to secondary prevention, especially in light of recent novel treatment approaches. Methods: In a single center cohort study, whole blood samples were collected from 437 subjects undergoing cardiac catheterization, who were followed for recurrent cardiovascular events during a mean follow up of 1.5 years. We selected a case cohort (n=22) with recurrent thrombotic events on standard medical therapy (stent thrombosis (n=6) or spontaneous myocardial infarction (MI) (n=16)) and a matched cohort with CAD, but uneventful clinical follow up (n=26), as well as a control group with cardiovascular risk factors, but without angiographic CAD (n=24). We performed complete miRNA next generation sequencing of RNA extracted from whole blood samples (including leukocytes and platelets). Results: Differential pattern of miRNA expression was demonstrated between controls, CAD patients with no events, and CAD patients with recurrent events. MiRNA that have been previously associated with MI, CAD, endothelial function, vascular smooth muscle cells, platelets, angiogenesis, heart failure, cardiac hypertrophy, arrhythmia, and stroke were found variably expressed in our case-control cohorts. Seventy miRNA (FDR <0.05) were linked with risk of recurrent myocardial infarction and future stent thrombosis, as compared to CAD patients with subsequently uneventful follow up. Conclusions: MiRNA next generation sequencing demonstrates altered fingerprint profile of whole blood miRNA expression among subjects with subsequent recurrent thrombotic events on standard medical therapy (‘non-responders’), as compared to subjects with no recurrent cardiovascular events. MiRNA profiling may be useful to identify high risk subjects and provide additional insights into disease mechanisms not currently attenuated with standard medical therapy used in treatment of CAD.
  • Loading...
    Thumbnail Image
    Item
    Patients with Diabetes and Significant Epicardial Coronary Artery Disease have Increased Systolic Left Ventricular Apical Rotation and Rotation Rate at Rest
    (Wiley, 2016-04) Rasalingam, Ravi; Holland, Mark R.; Cooper, Daniel H.; Novak, Eric; Rich, Michael W.; Miller, James G.; Pérez, Julio E.; Department of Radiology and Imaging Sciences, IU School of Medicine
    Objective The purpose of this study was to determine whether resting myocardial deformation and rotation may be altered in diabetic patients with significant epicardial coronary artery disease (CAD) with normal left ventricular ejection fraction. Design A prospective observational study. Setting Diagnosis of epicardial CAD in patients with diabetes. Patients and Methods Eighty-four patients with diabetes suspected of epicardial CAD scheduled for cardiac catheterization had a resting echocardiogram performed prior to their procedure. Echocardiographic measurements were compared between patients with and without significant epicardial CAD as determined by cardiac catheterization. Main Outcome Measures Measurement of longitudinal strain, strain rate, apical rotation, and rotation rate, using speckle tracking echocardiography. Results Eighty-four patients were studied, 39 (46.4%) of whom had significant epicardial CAD. Global peak systolic apical rotation was significantly increased (14.9 ± 5.1 vs. 11.0 ± 4.8 degrees, P < 0.001) in patients with epicardial CAD along with faster peak systolic apical rotation rate (90.4 ± 29 vs. 68.1 ± 22.2 degrees/sec, P < 0.001). These findings were further confirmed through multivariate logistic regression analysis (global peak systolic apical rotation OR = 1.17, P = 0.004 and peak systolic apical rotation rate OR = 1.05, P < 0.001). Conclusions Patients with diabetes with significant epicardial CAD and normal LVEF exhibit an increase in peak systolic apical counterclockwise rotation and rotation rate detected by echocardiography, suggesting that significant epicardial CAD and its associated myocardial effects in patients with diabetes may be detected noninvasively at rest.
  • Loading...
    Thumbnail Image
    Item
    Pre‐Liver Transplant Cardiac Catheterization is Associated with Low Rate of Myocardial Infarction and Cardiac Mortality
    (Wiley, 2019) Kutkut, Issa; Rachwan, Rayan Jo; Timsina, Lava R.; Ghabril, Marwan S.; Lacerda, Marco A.; Kubal, Chandrashekhar A.; Bourdillon, Patrick D.; Mangus, Richard S.; Surgery, School of Medicine
    Background A previous study at Indiana University demonstrated a reduction in myocardial infarction (MI) incidence with increased frequency of cardiac catheterization (CATH) in liver transplant (LT) candidates. A strict protocol for performing CATH based upon predefined risk factors, rather than non‐invasive testing alone, was applied to a subgroup (2009‐2010) from that study. CATH was followed by percutaneous coronary intervention (PCI) in cases of significant coronary artery disease (CAD; ≥50% stenosis). The current study applies this screening protocol to a larger cohort (2010‐2016) to assess post‐LT clinical outcomes. Results Among 811 LT patients, 766 underwent stress testing (94%), and 559 underwent CATH (69%) of whom 10% had CAD requiring PCI. The sensitivity of stress echocardiography in detecting significant CAD was 37%. Predictors of PCI included increasing age, male gender and personal history of CAD (p<0.05 for all). Compared to patients who had no CATH, patients who underwent CATH had higher mortality (p=0.07), and the hazard rates (HR) for mortality increased with CAD severity [normal CATH (HR: 1.35 [95% CI: 0.79, 2.33], p=0.298); non‐obstructive CAD (HR: 1.53 [95% CI: 0.84, 2.77], p=0.161); and significant CAD (HR: 1.96 [95% CI: 0.93, 4.15], p=0.080)]. Post‐LT outcomes were compared to the 2009‐2010 subgroup from the previous study and showed similar 1‐year overall mortality (8% and 6%, p=0.48); 1‐year MI incidence (<1% and <1%, p=0.8); and MI deaths as portion of all deaths (3% and 9%, p=0.35). Conclusion Stress echocardiography alone is not reliable in screening LT patients for CAD. Aggressive CAD screening with CATH is associated with low rate of MI and cardiac mortality and validates the previously published protocol when extrapolated over a larger sample and longer follow‐up period.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University