- Browse by Subject
Browsing by Subject "conserved quantities"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Conserved quantities in non-hermitian systems via vectorization method(CTU, 2022-02-28) Agarwal, Kaustubh S.; Muldoon, Jacob; Joglekar, Yogesh N.; Physics, School of ScienceOpen classical and quantum systems have attracted great interest in the past two decades. These include systems described by non-Hermitian Hamiltonians with parity-time (PT) symmetry that are best understood as systems with balanced, separated gain and loss. Here, we present an alternative way to characterize and derive conserved quantities, or intertwining operators, in such open systems. As a consequence, we also obtain non-Hermitian or Hermitian operators whose expectations values show single exponential time dependence. By using a simple example of a PT-symmetric dimer that arises in two distinct physical realizations, we demonstrate our procedure for static Hamiltonians and generalize it to time-periodic (Floquet) cases where intertwining operators are stroboscopically conserved. Inspired by the Lindblad density matrix equation, our approach provides a useful addition to the well-established methods for characterizing time-invariants in non-Hermitian systems.Item Conserved quantities in parity-time symmetric systems(APS, 2020) Bian, Zhihao; Xiao, Lei; Wang, Kunkun; Zhan, Xiang; Assogba Onanga, Franck; Ruzicka, Frantisek; Yi, Wei; Joglekar, Yogesh N.; Xue, Peng; Physics, School of ScienceConserved quantities such as energy or the electric charge of a closed system, or the Runge-Lenz vector in Kepler dynamics, are determined by its global, local, or accidental symmetries. They were instrumental in advances such as the prediction of neutrinos in the (inverse) beta decay process and the development of self-consistent approximate methods for isolated or thermal many-body systems. In contrast, little is known about conservation laws and their consequences in open systems. Recently, a special class of these systems, called parity-time (PT) symmetric systems, has been intensely explored for their remarkable properties that are absent in their closed counterparts. A complete characterization and observation of conserved quantities in these systems and their consequences is still lacking. Here, we present a complete set of conserved observables for a broad class of PT-symmetric Hamiltonians and experimentally demonstrate their properties using a single-photon linear optical circuit. By simulating the dynamics of a four-site system across a fourth-order exceptional point, we measure its four conserved quantities and demonstrate their consequences. Our results spell out nonlocal conservation laws in nonunitary dynamics and provide key elements that will underpin the self-consistent analyses of non-Hermitian quantum many-body systems that are forthcoming.