ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "computational limits"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Computational Limits of A Distributed Algorithm for Smoothing Spline
    (2017) Shang, Zuofeng; Cheng, Guang; Mathematical Sciences, School of Science
    In this paper, we explore statistical versus computational trade-off to address a basic question in the application of a distributed algorithm: what is the minimal computational cost in obtaining statistical optimality? In smoothing spline setup, we observe a phase transition phenomenon for the number of deployed machines that ends up being a simple proxy for computing cost. Specifically, a sharp upper bound for the number of machines is established: when the number is below this bound, statistical optimality (in terms of nonparametric estimation or testing) is achievable; otherwise, statistical optimality becomes impossible. These sharp bounds partly capture intrinsic computational limits of the distributed algorithm considered in this paper, and turn out to be fully determined by the smoothness of the regression function. As a side remark, we argue that sample splitting may be viewed as an alternative form of regularization, playing a similar role as smoothing parameter.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University