ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "complete hydrogen storage system"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Complete Hydrogen Storage System by ISRU
    (AIAA, 2018) Schubert, Peter J.; Electrical and Computer Engineering, School of Engineering and Technology
    New technologies make it possible to build in space a complete hydrogen storage system using ISRU methods and techniques. Hydrogen can be stored in a solid-state form on the surface atoms of high surface area matrices such as those of porous silicon. Silicon is abundant in regolith and can be purified using a purely mechanical means which results in particulates in the scale range of tens of nanometers. Reagents used to porosify these nano-particles can be regenerated thermally to essentially eliminate the need for resupply from earth. Catalysts are needed to divide dihydrogen gas into atomic hydrogen for solid-state adsorption and to mediate the temperatures and pressures of charge and discharge into ranges easily achievable with simple equipment. Recent research has identified the utility of non-platinum group catalyst materials which are widespread on the moon. Rapid discharge, needed for propulsion, is possible with infra-red illumination at wavelengths which pass through pure silicon but are absorbed by the silicon-hydrogen bond. Such IR emitters can be fabricated by embossing of silica and additive manufacturing of metals. Control and power electronics can be fabricated using a patented process designed for space operations, and built on either silicon or silicon carbide substrates derived from regolith. Bringing these five technologies together for the first time allows a system which can be fed with moderate pressure gaseous hydrogen at moderate temperatures, stored for long durations with minimum loss, then released upon demand across a wide range of controllable rates. Such a system can displace the need for cryogenic hydrogen storage. Being suitable to bottom-up fabrication using only in-space materials makes this a “green” ISRU technology to store hydrogen for fuel cells, rocket engines, and chemical processes.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University