ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "cold symptoms"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Identifying Metabolic Pathways Producing Alkamides in Echinacea purpurea
    (Office of the Vice Chancellor for Research, 2016-04-08) Williams, Jermell; Teitgen, Alicen; Minto, Robert
    Echinacea purpurea is a widely used herbal supplement that is frequently taken to relieve cold symptoms. Alkamides are a secondary metabolite found throughout the Echinacea genus that contain fatty acid chains incorporated into amides and are believed to be the bioactive agent in Echinacea. Our goal is to identify and understand the specific metabolic processes by which E. purpurea produces alkamides. In our experiment, Echinacea seedlings were grown to where the first true leaf emerged and unfurled which is when alkamide production is known to be most active. Alkamides were then extracted and taken to the GC/MS and LC/MS for analysis. Extracted alkamides were analyzed by triplequadrupole chromatography to investigate 13C labeling by glucose. Solid phase extractions were also performed to better observe fragmentation patterns. Fatty acids were also extracted to determine if fatty acids and alkamides were affected the same way by light or the lack of light, which would indicate that they are being synthesized in the same place. It was determined that neither compound experienced a synthesis decrease in the dark significant enough to support a model where acyl chains are newly created in the chloroplasts. Therefore alkamides are more likely to be made in the mitochondria. We are currently in the process of examining the spectra in order to determine the structures of the alkamides as well as any metabolic relationships.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University