- Browse by Subject
Browsing by Subject "coating"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Abrasive Resistant Coatings—A Review(MDPI, 2014-05-21) Wu, Linmin; Guo, Xingye; Zhang, Jing; Mechanical Engineering, School of Engineering and TechnologyAbrasive resistant coatings have been widely used to reduce or eliminate wear, extending the lifetime of products. Abrasive resistant coatings can also be used in certain environments unsuitable for lubrications. Moreover, abrasive resistant coatings have been employed to strengthen mechanical properties, such as hardness and toughness. Given recently rapid development in abrasive resistant coatings, this paper provides a review of major types of abrasive coatings, their wearing mechanisms, preparation methods, and properties.Item Finite Element Modeling of Coating Thickness Using Heat Transfer Method(Elsevier, 2021-01) Li, Yafeng; Dhulipalla, Anvesh; Zhang, Jian; Park, Hye-Yeong; Jung, Yeon-Gil; Koo, Dan Daehyun; Zhang, Jing; Mechanical and Energy Engineering, School of Engineering and TechnologyA new heat transfer based finite element model is proposed to simulate coating thickness in the electron-beam physical vapor deposition (EB-PVD) process. The major advantage of the proposed model is that it is much computationally efficient than the traditional ray-tracing based model by about two orders of magnitude. This is because the Gaussian distribution heating source has the same profile as the cosine relation used in the ray-tracing method. Firstly, the model simulates the temperature profile of a metal substrate heated by a heating source with a Gaussian distribution. Then using a calibrated conversion process, the temperature profile is converted to corresponding coating thickness. The model is successfully demonstrated by three validation cases, including a stationary disk, a stationary cylinder, and a rotary three-pin component. The predicted coating thicknesses in the validation cases are in good agreement with either the ray-tracing based analytical solution or experimental data. After its validation, the model is applied to a rotary turbine blade to predict its coating thickness distribution. In summary, the model is capable to simulate coating thickness in complex shaped parts.