- Browse by Subject
Browsing by Subject "chemical warfare agents"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Direct Analysis of Aerosolized Chemical Warfare Simulants Captured on a Modified Glass-Based Substrate by “Paper-Spray” Ionization(ACS, 2017-09) Dhummakupt, Elizabeth S.; Mach, Phillip M.; Carmany, Daniel; Demond, Paul S.; Moran, Theodore S.; Connell, Theresa; Wylie, Harold S.; Manicke, Nicholas E.; Nilles, J. Michael; Glaros, Trevor; Chemistry and Chemical Biology, School of SciencePaper spray ionization mass spectrometry offers a rapid alternative platform requiring no sample preparation. Aerosolized chemical warfare agent (CWA) simulants trimethyl phosphate, dimethyl methylphosphonate, and diisopropyl methylphosphonate were captured by passing air through a glass fiber filter disk within a disposable paper spray cartridge. CWA simulants were aerosolized at varying concentrations using an in-house built aerosol chamber. A custom 3D-printed holder was designed and built to facilitate the aerosol capture onto the paper spray cartridges. The air flow through each of the collection devices was maintained equally to ensure the same volume of air sampled across methods. Each approach yielded linear calibration curves with R2 values between 0.98–0.99 for each compound and similar limits of detection in terms of disbursed aerosol concentration. While the glass fiber filter disk has a higher capture efficiency (≈40%), the paper spray method produces analogous results even with a lower capture efficiency (≈1%). Improvements were made to include glass fiber filters as the substrate within the paper spray cartridge consumable. Glass fiber filters were then treated with ammonium sulfate to decrease chemical interaction with the simulants. This allowed for improved direct aerosol capture efficiency (>40%). Ultimately, the limits of detection were reduced to levels comparable to current worker population limits of 1 × 10–6 mg/m3.Item Environmental Decontamination of a Chemical Warfare Simulant Utilizing a Membrane Vesicle-Encapsulated Phosphotriesterase(ACS, 2018) Alves, Nathan J.; Moore, Martin; Johnson, Brandy J.; Dean, Scott N.; Turner, Kendrick B.; Medintz, Igor L.; Walper, Scott A.; Emergency Medicine, School of MedicineWhile technologies for the remediation of chemical contaminants continue to emerge, growing interest in green technologies has led researchers to explore natural catalytic mechanisms derived from microbial species. One such method, enzymatic degradation, offers an alternative to harsh chemical catalysts and resins. Recombinant enzymes, however, are often too labile or show limited activity when challenged with nonideal environmental conditions that may vary in salinity, pH, or other physical properties. Here, we demonstrate how phosphotriesterase encapsulated in a bacterial outer membrane vesicle can be used to degrade the organophosphate chemical warfare agent (CWA) simulant paraoxon in environmental water samples. We also carried out remediation assays on solid surfaces, including glass, painted metal, and fabric, that were selected as representative materials, which could potentially be contaminated with a CWA.