- Browse by Subject
Browsing by Subject "chemical reactions"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Machine-Learning-Assisted Free Energy Simulation of Solution-Phase and Enzyme Reactions(ACS, 2021-09) Pan, Xiaoliang; Yang, Junjie; Van, Richard; Epifanovsky, Evgeny; Ho, Junming; Huang, Jing; Pu, Jingzhi; Mei, Ye; Nam, Kwangho; Shao, Yihan; Chemistry and Chemical Biology, School of ScienceDespite recent advances in the development of machine learning potentials (MLPs) for biomolecular simulations, there has been limited effort on developing stable and accurate MLPs for enzymatic reactions. Here we report a protocol for performing machine-learning-assisted free energy simulation of solution-phase and enzyme reactions at the ab initio quantum-mechanical/molecular-mechanical (ai-QM/MM) level of accuracy. Within our protocol, the MLP is built to reproduce the ai-QM/MM energy and forces on both QM (reactive) and MM (solvent/enzyme) atoms. As an alternative strategy, a delta machine learning potential (ΔMLP) is trained to reproduce the differences between the ai-QM/MM and semiempirical (se) QM/MM energies and forces. To account for the effect of the condensed-phase environment in both MLP and ΔMLP, the DeePMD representation of a molecular system is extended to incorporate the external electrostatic potential and field on each QM atom. Using the Menshutkin and chorismate mutase reactions as examples, we show that the developed MLP and ΔMLP reproduce the ai-QM/MM energy and forces with errors that on average are less than 1.0 kcal/mol and 1.0 kcal mol–1 Å–1, respectively, for representative configurations along the reaction pathway. For both reactions, MLP/ΔMLP-based simulations yielded free energy profiles that differed by less than 1.0 kcal/mol from the reference ai-QM/MM results at only a fraction of the computational cost.Item Three-Body Recombination near a Narrow Feshbach Resonance in 6 Li(APS, 2018) Li, Jiaming; Liu, Ji; Luo, Le; Gao, Bo; Physics, School of ScienceWe experimentally measure and theoretically analyze the three-atom recombination rate, L3, around a narrow s-wave magnetic Feshbach resonance of 6Li−6Li at 543.3 G. By examining both the magnetic field dependence and, especially, the temperature dependence of L3 over a wide range of temperatures from a few μK to above 200 μK, we show that three-atom recombination through a narrow resonance follows a universal behavior determined by the long-range van der Waals potential and can be described by a set of rate equations in which three-body recombination proceeds via successive pairwise interactions. We expect the underlying physical picture to be applicable not only to narrow s wave resonances, but also to resonances in nonzero partial waves, and not only at ultracold temperatures, but also at much higher temperatures.