- Browse by Subject
Browsing by Subject "checkpoint inhibitor"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Hereditary diffuse gastric cancer therapeutic roadmap: current and novel approaches in a nutshell(Sage, 2020-01) El Rami, Fadi E.; Barsoumian, Hampartsoum B.; Khneizer, Gebran W.; Medicine, School of MedicineHereditary diffuse gastric cancer (HDGC) is a rare malignancy characterized by autosomal dominant inheritance of pathological variants of the CDH1 gene encoding E-cadherin, which is involved in cell–cell adhesion, maintenance of epithelial architecture, tumor suppression, and regulation of intracellular signaling pathways. Late-stage recognition of HDGC is typically associated with a poor clinical outcome due to its metastatic potential and risk of lobular breast cancer (LBC) development. The American College of Gastroenterology issued guidelines to evaluate HDGC, test for CDH1 genetic variants, and recommend prophylactic gastrectomy for carriers of CDH1 mutations. If surgery is not pursued, endoscopy is a surveillance alternative, although it carries a limited ability to detect malignant foci. As part of clinical research efforts, novel endoscopy advances are currently studied, and a center of excellence for HDGC was created for a comprehensive multidisciplinary team approach. Within this review, we cover current conventional treatment modalities such as gastrectomy and chemotherapy, as the mainstay treatments, in addition to Pembrolizumab, an immune checkpoint inhibitor, as the last therapeutic resort. We also shed light on novel and promising approaches with emphasis on immunotherapy to treat HDGC. We further break down the therapeutic paradigms to utilize molecular tools, antibodies against checkpoint inhibitors, TGF-β and tyrosine kinase inhibitors, cell-based adoptive therapies, and oncolytic viral therapies. We aim to expand the understanding on how to modulate the tumor microenvironment to tip the balance towards an anti-tumor phenotype, prevent metastasis of the primary disease, and potentially alter the therapeutic landscape for HDGC.Item Recurrent glioma clinical trial, CheckMate-143: the game is not over yet(Impact Journals, 2017-10-06) Filley, Anna C.; Henriquez, Mario; Dey, Mahua; Neurological Surgery, School of MedicineGlioblastoma (GBM) is the most common, and aggressive, primary brain tumor in adults. With a median patient survival of less than two years, GBM represents one of the biggest therapeutic challenges of the modern era. Even with the best available treatment, recurrence rates are nearly 100% and therapeutic options at the time of relapse are extremely limited. Nivolumab, an anti-programmed cell death-1 (PD-1) monoclonal antibody, has provided significant clinical benefits in the treatment of various advanced cancers and represented a promising therapy for primary and recurrent GBM. CheckMate 143 (NCT 02017717) was the first large randomized clinical trial of PD pathway inhibition in the setting of GBM, including a comparison of nivolumab and the anti-VEGF antibody, bevacizumab, in the treatment of recurrent disease. However, preliminary results, recently announced in a WFNOS 2017 abstract, demonstrated a failure of nivolumab to prolong overall survival of patients with recurrent GBM, and this arm of the trial was prematurely closed. In this review, we discuss the basic concepts underlying the rational to target PD pathway in GBM, address implications of using immune checkpoint inhibitors in central nervous system malignancies, provide a rationale for possible reasons contributing to the failure of nivolumab to prolong survival in patients with recurrent disease, and analyze the future role of immune checkpoint inhibitors in the treatment of GBM.