- Browse by Subject
Browsing by Subject "cerebral malaria"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item A Human Pluripotent Stem Cell-Derived In Vitro Model of the Blood-Brain Barrier in Cerebral Malaria(2024-01) Gopinadhan, Adnan; John, Chandy C.; Nelson, David E.; Bauer, Margaret E.; Absalon, Sabrina; Tran, Tuan M.Blood-brain barrier (BBB) disruption is a central feature of cerebral malaria (CM), a severe complication of Plasmodium falciparum (Pf) infections. In CM, sequestration of Pf-infected red blood cells (Pf-iRBCs) to brain endothelial cells combined with inflammation, hemolysis, microvasculature obstruction and endothelial dysfunction mediates BBB disruption, resulting in severe neurologic symptoms including coma and seizures, potentially leading to death or long-term sequelae. In vitro models have advanced our knowledge of CM-mediated BBB disruption, but the physiological relevance remains uncertain. I aimed to develop a novel in vitro model of the BBB in CM using human induced pluripotent stem cell-derived brain microvascular endothelial cells (hiPSC-BMECs) that mimic a near in vivo barrier phenotype. hiPSC-BMECs were co-cultured with HB3var03 strain Pf-iRBCs up to 9 hours. Barrier integrity was measured using transendothelial electrical resistance (TEER). Localization and expression of tight junction (TJ) proteins, occludin and zona occludin-1 (ZO-1), and endothelial marker, intercellular adhesion molecule 1 (ICAM-1) was determined using immunofluorescence imaging (IF) and western blotting (WB). Expression of angiogenic and cell stress markers were also measured. hiPSC-BMECs showed improved barrier integrity and localization of TJ proteins compared to immortalized BMECs. After 6-hours of co-culture with Pf-iRBCs, hiPSC-BMECs showed reduced TEER and disruption of TJ protein localization compared to co-culture with uninfected RBCs (RBCs), but no change in TJ protein expression was observed by WB in the Pf-iRBCs co-cultures. Expression of ICAM-1 on hiPSC-BMECs co-cultured with Pf-iRBCs was higher compared to co-culture with RBCs. In addition, there was an increase in expression of the angiogenin, platelet factor 4, and phospho-heat shock protein-27 in the Pf-iRBCs co-cultures compared to co-cultures with RBCs. These findings demonstrate the physiological relevance of our hiPSC-BMEC-based in vitro model of the BBB, as determined by elevated TEER and appropriate TJ protein localization. In co-culture with Pf-iRBCs, breakdown in the barrier integrity, changes in TJ protein localization, increase in expression of ICAM-1, and of markers of angiogenesis and cellular stress, all point towards a more relevant in vitro model, suitable for investigating pathogenic mechanisms underlying BBB disruption in CM.Item Adults Are Not Big Children: What Brain Magnetic Resonance Imaging Findings Tell Us About Differences in Pediatric and Adult Cerebral Malaria(Oxford, 2020-12) John, Chandy C.; Pediatrics, School of MedicineItem Elevated Cerebrospinal Fluid Tau Protein Concentrations on Admission Are Associated With Long-term Neurologic and Cognitive Impairment in Ugandan Children With Cerebral Malaria(Oxford, 2020-03-15) Datta, Dibyadyuti; Conroy, Andrea L; Castelluccio, Peter F; Ssenkusu, John M; Park, Gregory S; Opoka, Robert O; Bangirana, Paul; Idro, Richard; Saykin, Andrew J; John, Chandy C; Pediatrics, School of MedicineBackground Elevated concentrations of cerebrospinal fluid (CSF) tau, a marker of axonal injury, have been associated with coma in severe malaria (cerebral malaria [CM]). However, it is unknown whether axonal injury is related to long-term neurologic deficits and cognitive impairment in children with CM. Methods Admission CSF tau concentrations were measured in 145 Ugandan children with CM and compared to clinical and laboratory factors and acute and chronic neurologic and cognitive outcomes. Results Elevated CSF tau concentrations were associated with younger age, increased disease severity (lower glucose and hemoglobin concentrations, malaria retinopathy, acute kidney injury, and prolonged coma duration, all P < .05), and an increased CSF:plasma albumin ratio, a marker of blood–brain barrier breakdown (P < .001). Admission CSF tau concentrations were associated with the presence of neurologic deficits at hospital discharge, and at 6, 12, and 24 months postdischarge (all P ≤ .02). After adjustment for potential confounding factors, elevated log10-transformed CSF tau concentrations correlated with worse cognitive outcome z scores over 2-year follow-up for associative memory (β coefficient, –0.31 [95% confidence interval [CI], –.53 to –.10]) in children <5 years of age, and for overall cognition (–0.69 [95% CI, –1.19 to –.21]), attention (–0.78 [95% CI, –1.34 to –.23]), and working memory (–1.0 [95% CI, –1.68 to –.31]) in children ≥5 years of age (all P < .006). Conclusions Acute axonal injury in children with CM is associated with long-term neurologic deficits and cognitive impairment. CSF tau concentrations at the time of the CM episode may identify children at high risk of long-term neurocognitive impairment.