- Browse by Subject
Browsing by Subject "cell membranes"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item ANALYSIS OF MULTICHANNEL SIGNALS USING A CHANNEL SIMULATOR(Office of the Vice Chancellor for Research, 2012-04-13) Palacio, Luis A.; Petrache, Horia I.In biological systems ion channels can be thought of as opening and clos-ing pores that allow the flow of ion through a membrane. Ion channels are responsible for intracellular communication and keeping an osmotic equilib-rium across cell membranes. Measurements of ion channel activities that generate multichannel events (the opening of more than one channel at a time) are important to understand, but difficult to analyze. In many cases the multichannel events are discarded instead of used in the analysis. The availability of a channel signal simulator offers an excellent opportunity to develop and test statistical models for analysis of multichannel signals. We have generated single channel traces for various open probabilities and then digitally superimposed these signals to obtain multichannel events. We then applied our simplified analysis to these multichannel traces to calculate sin-gle channel parameters such as the average ON and OFF times and their statistical distribution of the ON times. The average ON time as well as the ON time distribution matched the single channel input mean open time. The importance of our findings is that our proposed analysis will be able to use the statistical distribution of ON times, in addition to the traditional “dwell time” (or average ON time) parameter, to characterize ion channels.Item Calculating Single-Channel Permeability and Conductance from Transition Paths(ACM, 2019-02) Zhou, Xiaoyan; Zhu, Fangqiang; Physics, School of SciencePermeability and conductance are the major transport properties of membrane channels, quantifying the rate of channel crossing by the solute. It is highly desirable to calculate these quantities in all-atom molecular dynamics simulations. When the solute crossing rate is low, however, direct methods would require prohibitively long simulations, and one thus typically adopts alternative strategies based on the free energy of single solute along the channel. Here we present a new method to calculate the crossing rate by initiating unbiased trajectories in which the solute is released at the free energy barrier. In this method, the total time the solute spends in the barrier region during a channel crossing (transition path) is used to determine the kinetic rate. Our method achieves a significantly higher statistical accuracy than the classical reactive flux method, especially for diffusive barrier crossing. Our test on ion permeation through a carbon nanotube verifies that the method correctly predicts the crossing rate and reproduces the spontaneous crossing events as in long equilibrium simulations. The rigorous and efficient method here will be valuable for quantitatively connecting simulations to experimental measurement of membrane channels.