ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "capstone"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Capstone Design Project Experience: Lunar Ice Extraction Design
    (American Society for Engineering Education, 2016-01) Zusack, Steven Anthony; Patil, Raveena; Lachenman, Sean; Johnson, Chanel Antoinette; Schubert, Peter J.; Department of Engineering Technology, School of Engineering and Technology
    A group of senior undergraduate students came together as part of a non-traditional capstone design project. The assignment was to take part in the NASA RASC-AL competition and required adjustment to the class curriculum. Two examples are that a direct point of contact from the customer would not be possible as there is no specific person at NASA meant to act as the customer and the submission deadline was after the semester concluded. The students were all from the mechanical engineering department and had a fascination with space technology but came from vastly different demographic backgrounds representing multiple spheres of diversity. This diversity brought unique and unexpected approaches to the project. The project required close interaction of the group throughout and after the semester to accomplish a very difficult goal: the design of a full scale lunar ice extraction facility capable of running autonomously and producing at least 100 metric tonnes of ice per year. The operational plan is to be accompanied by a detailed budget and launch plans to begin taking effect in 2025. Having no experience working with one another prior to this project, the group was required to quickly develop a productive team ethos to address such a large challenge. The aim of this study is to assess the outcomes and reactions during a project from a diverse group of students attempting to complete an unusual capstone design. Accompanying this are pre-, intra-, and post-project surveys to assess effectiveness of the group on key project issues. The primary research questions to answer are: does the perception of the group regarding effectiveness positively correlate with the feelings of ownership of the project and feelings that the individual students’ passions are being considered. Further, because the competition is staged and set to go on the full academic year, the students are interviewed regarding plans on continuing the project beyond the current semester when the majority of the team will have graduated.
  • Loading...
    Thumbnail Image
    Item
    Multi-Disciplinary Capstone Project on Self-Replicating 3-D Printer
    (American Society for Engineering Education, 2016-06) Cooney, Elaine M.; Yearling, Paul Robert; Smith, Jacob Allen; Department of Engineering Technology, School of Engineering and Technology
    This paper explores the dynamics of a multi-semester multi-disciplinary team approach applied within a traditional senior capstone project that involves strong design and manufacturing components. In addition, the logistics of running a successful senior project will be discussed along with the associated problems of organization within a multi-program environment. The key drivers and motivators behind this paper are, most importantly, that multi-disciplinary teams are very common in industry and that our industrial advisory boards for Electrical Engineering Technology (EET) and Mechanical Engineering Technology (MET) suggested that we do more multi-disciplinary projects. Furthermore, this multi-disciplinary team approach will satisfy the proposed ABET/ETAC outcomes for 2016. The Proposed Revisions to the Program Criteria for Mechanical Engineering Technology and Similarly Named Programs ABET/ETAC outcomes say “The capstone experience, ideally multidisciplinary in nature, must be project based and include formal design, implementation and test processes.” (emphasis added) Faculty searched for a technology that would allow both EET and MET students to contribute equally to the success of the project, and decided upon additive manufacturing. Students have been exposed extensively through formal course material covering 3D printing technology and would be familiar with the operation of 3D printers in general. Therefore, it was reasoned a familiarity with the project goal of designing and constructing a self-replicating 3D printer would give students more confidence in tackling the difficult task of managing an extended project over both the design and manufacture phases, and mastering effective communicate across disciplines. The student team organization mirrors current industry standard operating procedures. First, the team is multidisciplinary, including EET students with programing and circuits skills and MET students with CAD, design, mechanical analysis skills. All students must demonstrate project process skills, utilizing current design for six-sigma procedures. The students learn a standard set of tools to manage the project, as well as synthesize those tools with their discipline specific knowledge. Because of the program curriculum plans, the EET students are involved in the project for two semesters. The MET students have a one semester project course; this enables one group of MET students to design the mechanical system, document their work, and pass it on to a second team for implementation. This was considered a positive based on what is typical in industry, where engineering groups are constantly interfacing. Results include observations of group member dynamics, quality of work, timeliness, budget management, and communication across disciplines. Rubrics to document student achievement of outcomes are used.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University