- Browse by Subject
Browsing by Subject "cancer pathogenesis"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Dissecting the expression landscape of RNA-binding proteins in human cancers(2014-01) Kechavarzi, Bobak; Janga, Sarath ChandraBackground RNA-binding proteins (RBPs) play important roles in cellular homeostasis by controlling gene expression at the post-transcriptional level. Results We explore the expression of more than 800 RBPs in sixteen healthy human tissues and their patterns of dysregulation in cancer genomes from The Cancer Genome Atlas project. We show that genes encoding RBPs are consistently and significantly highly expressed compared with other classes of genes, including those encoding regulatory components such as transcription factors, miRNAs and long non-coding RNAs. We also demonstrate that a set of RBPs, numbering approximately 30, are strongly upregulated (SUR) across at least two-thirds of the nine cancers profiled in this study. Analysis of the protein–protein interaction network properties for the SUR and non-SUR groups of RBPs suggests that path length distributions between SUR RBPs is significantly lower than those observed for non-SUR RBPs. We further find that the mean path lengths between SUR RBPs increases in proportion to their contribution to prognostic impact. We also note that RBPs exhibiting higher variability in the extent of dysregulation across breast cancer patients have a higher number of protein–protein interactions. We propose that fluctuating RBP levels might result in an increase in non-specific protein interactions, potentially leading to changes in the functional consequences of RBP binding. Finally, we show that the expression variation of a gene within a patient group is inversely correlated with prognostic impact. Conclusions Overall, our results provide a roadmap for understanding the impact of RBPs on cancer pathogenesis.Item The Role and Therapeutic Potential of miRNAs in Colorectal Liver Metastasis(Office of the Vice Chancellor for Research, 2015-04-17) Bansal, Ruchi; Sahu, Smiti Snigdha; Nabinger, Sarah C.; Guanglong, Jiang; Bates, Alison; Lee, Sangbin; Hiromi, Tanaka; Liu, Yunlong; Kota, JanaiahColorectal cancer (CRC) is the third most common malignancy worldwide. Liver metastasis occurs in 60% of CRC patients and responds poorly to the available treatments making it the major cause of their mortality. MicroRNAs (miRNAs) are highly conserved, endogenously encoded small, non-coding RNA molecules that regulate global gene expression. The role of microRNAs in cancer pathogenesis, including CRC, has been well documented. However, in-depth miRNA expression analysis on a large cohort of CRC tumors is needed to identify the clinically relevant miRNAs and explore their potential to target liver metastases. To this purpose, we analyzed miRNA expression data of 406 CRC tumors from the publicly available colorectal cancer genome sequencing project and identified 58 miRNAs that were significantly downregulated. 10 miRNAs were selected for further analyses that were either known to target genes in cellular pathways or located within the commonly lost chromosomal loci associated with CRC liver metastases. Of these 10 miRNAs, miR-132, miR-378f, miR-605 and miR-1976 showed significant downregulation with >2 fold change (p>0.05) in primary and CRC liver metastasis tissues and in CRC cell lines. To investigate their anti-tumorigenic and metastatic properties, we transfected 3 different CRC cell lines (SW620, HCT-116 and CT-26) with miR-mimics and subjected them to cell proliferation, apoptosis and cell transformation assays. Ectopic expression of miR-378f, -605 and -1976 suppressed CRC cell proliferation, anchorage independent growth, migration and invasion and induced apoptosis. Interestingly, CRC patients with high miR-378f and miR-1976 had better survival compared to low expressing patients (p<0.044). Our in vitro data suggest the anti-tumorigenic/metastatic properties of miR-378f, -605 and -1976 in CRC. Further understanding of their functions and in vivo therapeutic evaluations may help in developing novel therapeutic strategies for this malignancy.