- Browse by Subject
Browsing by Subject "cachexia"
Now showing 1 - 10 of 11
Results Per Page
Sort Options
Item ACVR2B/Fc counteracts chemotherapy-induced loss of muscle and bone mass(Nature Publishing group, 2017-10-31) Barreto, Rafael; Kitase, Yukiko; Matsumoto, Tsutomu; Pin, Fabrizio; Colston, Kyra C.; Couch, Katherine E.; O’Connell, Thomas M.; Couch, Marion E.; Bonewald, Lynda F.; Bonetto, Andrea; Surgery, School of MedicineChemotherapy promotes the development of cachexia, a debilitating condition characterized by muscle and fat loss. ACVR2B/Fc, an inhibitor of the Activin Receptor 2B signaling, has been shown to preserve muscle mass and prolong survival in tumor hosts, and to increase bone mass in models of osteogenesis imperfecta and muscular dystrophy. We compared the effects of ACVR2B/Fc on muscle and bone mass in mice exposed to Folfiri. In addition to impairing muscle mass and function, Folfiri had severe negative effects on bone, as shown by reduced trabecular bone volume fraction (BV/TV), thickness (Tb.Th), number (Tb.N), connectivity density (Conn.Dn), and by increased separation (Tb.Sp) in trabecular bone of the femur and vertebra. ACVR2B/Fc prevented the loss of muscle mass and strength, and the loss of trabecular bone in femurs and vertebrae following Folfiri administration. Neither Folfiri nor ACVR2B/Fc had effects on femoral cortical bone, as shown by unchanged cortical bone volume fraction (Ct.BV/TV), thickness (Ct.Th) and porosity. Our results suggest that Folfiri is responsible for concomitant muscle and bone degeneration, and that ACVR2B/Fc prevents these derangements. Future studies are required to determine if the same protective effects are observed in combination with other anticancer regimens or in the presence of cancer.Item Cancer and Chemotherapy Contribute to Muscle Loss by Activating Common Signaling Pathways(Frontiers, 2016) Barreto, Rafael; Mandili, Giorgia; Witzmann, Frank A.; Novelli, Francesco; Zimmers, Teresa A.; Bonetto, Andrea; Department of Surgery, IU School of MedicineCachexia represents one of the primary complications of colorectal cancer due to its effects on depletion of muscle and fat. Evidence suggests that chemotherapeutic regimens, such as Folfiri, contribute to cachexia-related symptoms. The purpose of the present study was to investigate the cachexia signature in different conditions associated with severe muscle wasting, namely Colon-26 (C26) and Folfiri-associated cachexia. Using a quantitative LC-MS/MS approach, we identified significant changes in 386 proteins in the quadriceps muscle of Folfiri-treated mice, and 269 proteins differentially expressed in the C26 hosts (p < 0.05; -1.5 ≥ fold change ≥ +1.5). Comparative analysis isolated 240 proteins that were modulated in common, with a large majority (218) that were down-regulated in both experimental settings. Interestingly, metabolic (47.08%) and structural (21.25%) proteins were the most represented. Pathway analysis revealed mitochondrial dysfunctions in both experimental conditions, also consistent with reduced expression of mediators of mitochondrial fusion (OPA-1, mitofusin-2), fission (DRP-1) and biogenesis (Cytochrome C, PGC-1α). Alterations of oxidative phosphorylation within the TCA cycle, fatty acid metabolism, and Ca(2+) signaling were also detected. Overall, the proteomic signature in the presence of both chemotherapy and cancer suggests the activation of mechanisms associated with movement disorders, necrosis, muscle cell death, muscle weakness and muscle damage. Conversely, this is consistent with the inhibition of pathways that regulate nucleotide and fatty acid metabolism, synthesis of ATP, muscle and heart function, as well as ROS scavenging. Interestingly, strong up-regulation of pro-inflammatory acute-phase proteins and a more coordinated modulation of mitochondrial and lipidic metabolisms were observed in the muscle of the C26 hosts that were different from the Folfiri-treated animals. In conclusion, our results suggest that both cancer and chemotherapy contribute to muscle loss by activating common signaling pathways. These data support the undertaking of combination strategies that aim to both counteract tumor growth and reduce chemotherapy side effects.Item Chemotherapy-related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs(Impact, 2016-06) Barreto, Rafael; Waning, David L.; Gao, Hongyu; Liu, Yunlong; Zimmers, Teresa A.; Bonetto, Andrea; Department of Surgery, IU School of MedicineCachexia affects the majority of cancer patients, with currently no effective treatments. Cachexia is defined by increased fatigue and loss of muscle function resulting from muscle and fat depletion. Previous studies suggest that chemotherapy may contribute to cachexia, although the causes responsible for this association are not clear. The purpose of this study was to investigate the mechanism(s) associated with chemotherapy-related effects on body composition and muscle function. Normal mice were administered chemotherapy regimens used for the treatment of colorectal cancer, such as Folfox (5-FU, leucovorin, oxaliplatin) or Folfiri (5-FU, leucovorin, irinotecan) for 5 weeks. The animals that received chemotherapy exhibited concurrent loss of muscle mass and muscle weakness. Consistently with previous findings, muscle wasting was associated with up-regulation of ERK1/2 and p38 MAPKs. No changes in ubiquitin-dependent proteolysis or in the expression of TGFβ-family members were detected. Further, marked decreases in mitochondrial content, associated with abnormalities at the sarcomeric level and with increase in the number of glycolytic fibers were observed in the muscle of mice receiving chemotherapy. Finally, ACVR2B/Fc or PD98059 prevented Folfiri-associated ERK1/2 activation and myofiber atrophy in C2C12 cultures. Our findings demonstrate that chemotherapy promotes MAPK-dependent muscle atrophy as well as mitochondrial depletion and alterations of the sarcomeric units. Therefore, these findings suggest that chemotherapy potentially plays a causative role in the occurrence of muscle loss and weakness. Moreover, the present observations provide a strong rationale for testing ACVR2B/Fc or MEK1 inhibitors in combination with anticancer drugs as novel strategies aimed at preventing chemotherapy-associated muscle atrophy.Item The Combination of Low Skeletal Muscle Mass and High Tumor Interleukin-6 Associates with Decreased Survival in Clear Cell Renal Cell Carcinoma(MDPI, 2020-06-17) Kays, Joshua K.; Koniaris, Leonidas G.; Cooper, Caleb A.; Pili, Roberto; Jiang, Guanglong; Liu, Yunlong; Zimmers, Teresa A.; Medical and Molecular Genetics, School of MedicineClear cell renal carcinoma (ccRCC) is frequently associated with cachexia which is itself associated with decreased survival and quality of life. We examined relationships among body phenotype, tumor gene expression, and survival. Demographic, clinical, computed tomography (CT) scans and tumor RNASeq for 217 ccRCC patients were acquired from the Cancer Imaging Archive and The Cancer Genome Atlas (TCGA). Skeletal muscle and fat masses measured from CT scans and tumor cytokine gene expression were compared with survival by univariate and multivariate analysis. Patients in the lowest skeletal muscle mass (SKM) quartile had significantly shorter overall survival versus the top three SKM quartiles. Patients who fell into the lowest quartiles for visceral adipose mass (VAT) and subcutaneous adipose mass (SCAT) also demonstrated significantly shorter overall survival. Multiple tumor cytokines correlated with mortality, most strongly interleukin-6 (IL-6); high IL-6 expression was associated with significantly decreased survival. The combination of low SKM/high IL-6 was associated with significantly lower overall survival compared to high SKM/low IL-6 expression (26.1 months vs. not reached; p < 0.001) and an increased risk of mortality (HR = 5.95; 95% CI = 2.86–12.38). In conclusion, tumor cytokine expression, body composition, and survival are closely related, with low SKM/high IL-6 expression portending worse prognosis in ccRCC.Item Distinct cachexia phenotypes and the importance of adipose tissue loss on survival of patients with advanced pancreatic cancer on FOLFIRINOX chemotherapy(2017-12) Kays, Joshua; Zimmers, Teresa A.; Koniaris, Leonidas G.By the traditional definition of unintended weight loss, cachexia develops in ~80% of patients with pancreatic ductal adenocarcinoma (PDAC). Here we measure the longitudinal body composition changes in patients with advanced PDAC undergoing FOLFIRINOX therapy. We performed a retrospective review of 53 patients with advanced PDAC on FOLFIRINOX as first line therapy at Indiana University Hospital from July 2010 to August 2015. Demographic, clinical, and survival data were collected. Body composition measurement, trend, univariate and multivariate analysis were performed. Three cachexia phenotypes were identified. The majority of patients, 64%, had Muscle-and-Fat Wasting (MFW), while 17% had Fat-Only Wasting (FW) and 19% had No Wasting (NW). NW had significantly improved overall median survival (OMS) of 22.6 months vs. 13.0 months for FW and 12.2 months for MFW (p=0.02). FW (HR=5.2; 95%CI=1.5-17.3) and MFW (HR=1.8; 95%CI=1.1-2.9) were associated with an increased risk of mortality compared to NW. OMS and risk of mortality did not differ between FW and MFW. Progression of disease, sarcopenic obesity at diagnosis, and primary tail tumors were also associated with decreased OMS. On multivariate analysis cachexia phenotype and chemotherapy response were independently associated with survival. Three phenotypes of cachexia were observed. Moreover, three phenotypes suggests molecular or genetic heterogeneity of host or tumor. Identifying these differences will be vital to defining optimal treatment for cachexia. Survival among FW was as poor as MFW suggesting adipose tissue plays a crucial role in cachexia. Blunting or possibly preventing cachexia may confer a significant survival advantage in patients with advanced PDAC.Item Exogenous GDF11 Induces Cardiac and Skeletal Muscle Dysfunction and Wasting(Springer, 2017-07) Zimmers, Teresa A.; Jiang, Yanling; Wang, Meijing; Liang, Tiffany W.; Rupert, Joseph E.; Au, Ernie D.; Marino, Francesco E.; Couch, Marion E.; Koniaris, Leonidas G.; Surgery, School of MedicineGrowth differentiation factor 11 (GDF11), a TGF-beta superfamily member, is highly homologous to myostatin and essential for embryonic patterning and organogenesis. Reports of GDF11 effects on adult tissues are conflicting, with some describing anti-aging and pro-regenerative activities on the heart and skeletal muscle while others opposite or no effects. Herein, we sought to determine the in vivo cardiac and skeletal muscle effects of excess GDF11. Mice were injected with GDF11 secreting cells, an identical model to that used to initially identify the in vivo effects of myostatin. GDF11 exposure in mice induced whole body wasting and profound loss of function in cardiac and skeletal muscle over a 14-day period. Loss of cardiac mass preceded skeletal muscle loss. Cardiac histologic and echocardiographic evaluation demonstrated loss of ventricular muscle wall thickness, decreased cardiomyocyte size, and decreased cardiac function 10 days following initiation of GDF11 exposure. Changes in skeletal muscle after GDF11 exposure were manifest at day 13 and were associated with wasting, decreased fiber size, and reduced strength. Changes in cardiomyocytes and skeletal muscle fibers were associated with activation of SMAD2, the ubiquitin–proteasome pathway and autophagy. Thus, GDF11 over administration in vivo results in cardiac and skeletal muscle loss, dysfunction, and death. Here, serum levels of GDF11 by Western blotting were 1.5-fold increased over controls. Although GDF11 effects in vivo are likely dose, route, and duration dependent, its physiologic changes are similar to myostatin and other Activin receptors ligands. These data support that GDF11, like its other closely related TGF-beta family members, induces loss of cardiac and skeletal muscle mass and function.Item Hypermetabolism and hypercatabolism of skeletal muscle accompany mitochondrial stress following severe burn trauma(APS Journals, 2016-08-01) Ogunbileje, John O.; Porter, Craig; Herndon, David N.; Chao, Tony; Abdelrahman, Doaa R.; Papadimitriou, Anastasia; Chondronikola, Maria; Zimmers, Teresa A.; Reidy, Paul T.; Rasmussen, Blake B.; Sidossis, Labros S.; Surgery, School of MedicineBurn trauma results in prolonged hypermetabolism and skeletal muscle wasting. How hypermetabolism contributes to muscle wasting in burn patients remains unknown. We hypothesized that oxidative stress, cytosolic protein degradation, and mitochondrial stress as a result of hypermetabolism contribute to muscle cachexia postburn. Patients (n = 14) with burns covering >30% of their total body surface area were studied. Controls (n = 13) were young healthy adults. We found that burn patients were profoundly hypermetabolic at both the skeletal muscle and systemic levels, indicating increased oxygen consumption by mitochondria. In skeletal muscle of burn patients, concurrent activation of mTORC1 signaling and elevation in the fractional synthetic rate paralleled increased levels of proteasomes and elevated fractional breakdown rate. Burn patients had greater levels of oxidative stress markers as well as higher expression of mtUPR-related genes and proteins, suggesting that burns increased mitochondrial stress and protein damage. Indeed, upregulation of cytoprotective genes suggests hypermetabolism-induced oxidative stress postburn. In parallel to mtUPR activation postburn, mitochondrial-specific proteases (LONP1 and CLPP) and mitochondrial translocases (TIM23, TIM17B, and TOM40) were upregulated, suggesting increased mitochondrial protein degradation and transport of preprotein, respectively. Our data demonstrate that proteolysis occurs in both the cytosolic and mitochondrial compartments of skeletal muscle in severely burned patients. Increased mitochondrial protein turnover may be associated with increased protein damage due to hypermetabolism-induced oxidative stress and activation of mtUPR. Our results suggest a novel role for the mitochondria in burn-induced cachexia.Item Interleukin-1α Promotes Tumor Growth and Cachexia in MCF-7 Xenograft Model of Breast Cancer(Elsevier, 2003-12) Kumar, Suresh; Kishimoto, Hiromitsu; Chua, Hui Lin; Badve, Sunil; Miller, Kathy D.; Bigsby, Robert M.; Nakshatri, HarikrishnaProgression of breast cancer involves cross-talk between epithelial and stromal cells. This cross-talk is mediated by growth factors and cytokines secreted by both cancer and stromal cells. We previously reported expression of interleukin (IL)-1α in a subset of breast cancers and demonstrated that IL-1α is an autocrine and paracrine inducer of prometastatic genes in in vitro systems. To understand the role of IL-1α in breast cancer progression in vivo, we studied the growth of MCF-7 breast cancer cells overexpressing a secreted form of IL-1α (MCF-7IL-1α) in nude mice. MCF-7IL-1α cells formed rapidly growing estrogen-dependent tumors compared to parental cells. Interestingly, IL-1α expression alone was not sufficient for metastasis in vivo although in vitro studies showed induction of several prometastatic genes and matrix metalloproteinase activity in response to cross-talk between IL-1α-expressing cancer cells and fibroblasts. Animals implanted with MCF-7IL-1α cells were cachetic, which correlated with increased leptin serum levels but not other known cachexia-inducing cytokines such as IL-6, tumor necrosis factor, or interferon gamma. Serum triglycerides, but not blood glucose were lower in animals with MCF-7IL-1α cell-derived tumors compared to animals with control cell-derived tumors. Cachexia was associated with atrophy of epidermal and adnexal structures of skin; a similar phenotype is reported in triglyceride-deficient mice and in ob/ob mice injected with leptin. Mouse leptin-specific transcripts could be detected only in MCF-7IL-1α cell-derived tumors, which suggests that IL-1α increases leptin expression in stromal cells recruited into the tumor microenvironment. Despite increased serum leptin levels, animals with MCF-7IL-1α cell-derived tumors were not anorexic suggesting only peripheral action of tumor-derived leptin, which principally targets lipid metabolism. Taken together, these results suggest that cancer cell-derived cytokines, such as IL-1α, induce cachexia by affecting leptin-dependent metabolic pathways.Item Multimodal Action of Mas Activation for Systemic Cancer Cachexia Therapy(AACR, 2019-02) Rupert, Joseph E.; Koniaris, Leonidas G.; Zimmers, Teresa A.; Surgery, School of MedicineCancer cachexia remains a largely intractable, deadly condition for patients with no approved, effective therapies. However, research progress over the past few decades demonstrates that cachexia is a disease with specific, targetable mechanisms. New work by Murphy and colleagues in this issue of Cancer Research suggests that activation of the alternative renin–angiotensin system with the nonpeptide Mas receptor agonist AVE 0991 holds promise for reducing muscle wasting in cancer. Their cell studies demonstrate on-target activity in skeletal muscle cells, whereas their mouse results suggest potentially more important systemic effects.Item Sarcopenia, frailty and cachexia patients detected in a multisystem electronic health record database(BMC, 2020-07-31) Moorthi, Ranjani N.; Liu, Ziyue; El-Azab, Sarah A.; Lembcke, Lauren R.; Miller, Matthew R.; Broyles, Andrea A.; Imel, Erik A.; Medicine, School of MedicineBackground: Sarcopenia, cachexia and frailty have overlapping features and clinical consequences, but often go unrecognized. The objective was to detect patients described by clinicians as having sarcopenia, cachexia or frailty within electronic health records (EHR) and compare clinical variables between cases and matched controls. Methods: We conducted a case-control study using retrospective data from the Indiana Network for Patient Care multi-health system database from 2016 to 2017. The computable phenotype combined ICD codes for sarcopenia, cachexia and frailty, with clinical note text terms for sarcopenia, cachexia and frailty detected using natural language processing. Cases with these codes or text terms were matched to controls without these codes or text terms matched on birth year, sex and race. Two physicians reviewed EHR for all cases and a subset of controls. Comorbidity codes, laboratory values, and other coded clinical variables were compared between groups using Wilcoxon matched-pair sign-rank test for continuous variables and conditional logistic regression for binary variables. Results: Cohorts of 9594 cases and 9594 matched controls were generated. Cases were 59% female, 69% white, and a median (1st, 3rd quartiles) age 74.9 (62.2, 84.8) years. Most cases were detected by text terms without ICD codes n = 8285 (86.4%). All cases detected by ICD codes (total n = 1309) also had supportive text terms. Overall 1496 (15.6%) had concurrent terms or codes for two or more of the three conditions (sarcopenia, cachexia or frailty). Of text term occurrence, 97% were used positively for sarcopenia, 90% for cachexia, and 95% for frailty. The remaining occurrences were negative uses of the terms or applied to someone other than the patient. Cases had lower body mass index, albumin and prealbumin, and significantly higher odds ratios for diabetes, hypertension, cardiovascular and peripheral vascular diseases, chronic kidney disease, liver disease, malignancy, osteoporosis and fractures (all p < 0.05). Cases were more likely to be prescribed appetite stimulants and caloric supplements. Conclusions: Patients detected with a computable phenotype for sarcopenia, cachexia and frailty differed from controls in several important clinical variables. Potential uses include detection among clinical cohorts for targeting recruitment for research and interventions.