ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "cKL"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Novel functions of circulating Klotho
    (Elsevier, 2017-07) Hum, Julia M.; O’Bryan, Linda; Smith, Rosamund C.; White, Kenneth E.; Medical and Molecular Genetics, School of Medicine
    A significant portion of the key biological functions of αKlotho (αKL) and its cognate ligand Fibroblast growth factor-23 (FGF23) have been revealed through the study of rare diseases of mineral metabolism. These findings have far reaching implications for common disorders such as chronic kidney disease-mineral bone disorder (CKD-MBD). αKL’s predominant effect on mineral homeostasis is through its actions in the kidney as a co-receptor for FGF23, however emerging data has shed light on its capacity to act as a circulating factor through the cleavage of the transmembrane form of αKL (‘mKL’) to produce ‘cleaved KL’ or ‘cKL’. This review summarizes new findings from studies using extended delivery of cKL to mouse models with phenotypes reflecting those arising in CKD-MBD.
  • Loading...
    Thumbnail Image
    Item
    Sustained Klotho delivery reduces serum phosphate in a model of diabetic nephropathy
    (American Physiological Society, 2019-04-01) Hum, Julia M.; O’Bryan, Linda M.; Tatiparthi, Arun K.; Clinkenbeard, Erica L.; Ni, Pu; Cramer, Martin S.; Bhaskaran, Manoj; Johnson, Robert L.; Wilson, Jonathan M.; Smith, Rosamund C.; White, Kenneth E.; Medical and Molecular Genetics, School of Medicine
    Diabetic nephropathy (DN) is a primary cause of end-stage renal disease and is becoming more prevalent because of the global rise in type 2 diabetes. A model of DN, the db/db uninephrectomized (db/db-uni) mouse, is characterized by obesity, as well as compromised renal function. This model also manifests defects in mineral metabolism common in DN, including hyperphosphatemia, which leads to severe endocrine disease. The FGF23 coreceptor, α-Klotho, circulates as a soluble, cleaved form (cKL) and may directly influence phosphate handling. Our study sought to test the effects of cKL on mineral metabolism in db/db-uni mice. Mice were placed into either mild or moderate disease groups on the basis of the albumin-to-creatinine ratio (ACR). Body weights of db/db-uni mice were significantly greater across the study compared with lean controls regardless of disease severity. Adeno-associated cKL administration was associated with increased serum Klotho, intact, bioactive FGF23 (iFGF23), and COOH-terminal fragments of FGF23 (P < 0.05). Blood urea nitrogen was improved after cKL administration, and cKL corrected hyperphosphatemia in the high- and low-ACR db/db-uni groups. Interestingly, 2 wk after cKL delivery, blood glucose levels were significantly reduced in db/db-uni mice with high ACR (P < 0.05). Interestingly, several genes associated with stabilizing active iFGF23 were also increased in the osteoblastic UMR-106 cell line with cKL treatment. In summary, delivery of cKL to a model of DN normalized blood phosphate levels regardless of disease severity, supporting the concept that targeting cKL-affected pathways could provide future therapeutic avenues in DN.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University