- Browse by Subject
Browsing by Subject "c-Met"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item c-Met Mediated Cytokine Network Promotes Brain Metastasis of Breast Cancer by Remodeling Neutrophil Activities(MDPI, 2023-05-05) Liu, Yin; Smith, Margaret R.; Wang, Yuezhu; D’Agostino, Ralph, Jr.; Ruiz, Jimmy; Lycan, Thomas; Kucera, Gregory L.; Miller, Lance D.; Li, Wencheng; Chan, Michael D.; Farris, Michael; Su, Jing; Song, Qianqian; Zhao, Dawen; Chandrasekaran, Arvind; Xing, Fei; Biostatistics and Health Data Science, School of MedicineThe brain is one of the most common metastatic sites among breast cancer patients, especially in those who have Her2-positive or triple-negative tumors. The brain microenvironment has been considered immune privileged, and the exact mechanisms of how immune cells in the brain microenvironment contribute to brain metastasis remain elusive. In this study, we found that neutrophils are recruited and influenced by c-Met high brain metastatic cells in the metastatic sites, and depletion of neutrophils significantly suppressed brain metastasis in animal models. Overexpression of c-Met in tumor cells enhances the secretion of a group of cytokines, including CXCL1/2, G-CSF, and GM-CSF, which play critical roles in neutrophil attraction, granulopoiesis, and homeostasis. Meanwhile, our transcriptomic analysis demonstrated that conditioned media from c-Met high cells significantly induced the secretion of lipocalin 2 (LCN2) from neutrophils, which in turn promotes the self-renewal of cancer stem cells. Our study unveiled the molecular and pathogenic mechanisms of how crosstalk between innate immune cells and tumor cells facilitates tumor progression in the brain, which provides novel therapeutic targets for treating brain metastasis.Item Targeted dual inhibition of c‐Met/VEGFR2 signalling by foretinib improves antitumour effects of nanoparticle paclitaxel in gastric cancer models(Wiley, 2021-06) Grojean, Meghan; Schwarz, Margaret A.; Schwarz, Johann R.; Hassan, Sazzad; U., von Holzen; Zhang, Changhua; Schwarz, Roderich E.; Awasthi, Niranjan; Surgery, School of MedicineElevated expression of multiple growth factors and receptors including c-Met and VEGFR has been reported in gastric adenocarcinoma (GAC) and thus provides a potentially useful therapeutic target. The therapeutic efficacy of foretinib, a c-Met/VEGFR2 inhibitor, was determined in combination with nanoparticle paclitaxel (NPT) in GAC. Animal studies were conducted in NOD/SCID mice in subcutaneous and peritoneal dissemination xenografts. The mechanism of action was assessed by Immunohistochemical and Immunoblot analyses. In c-Met overexpressing MKN-45 cell-derived xenografts, NPT and foretinib demonstrated inhibition in tumour growth, while NPT plus foretinib showed additive effects. In c-Met low-expressing SNU-1 or patient-derived xenografts, the foretinib effect was smaller, while NPT had a similar effect compared with MKN-45, as NPT plus foretinib still exhibited an additive response. Median mice survival was markedly improved by NPT (83%), foretinib (100%) and NPT plus foretinib (230%) in peritoneal dissemination xenografts. Subcutaneous tumour analyses exhibited that foretinib increased cancer cell death and decreased cancer cell proliferation and tumour vasculature. NPT and foretinib suppressed the proliferation of GAC cells in vitro and had additive effects in combination. Further, foretinib caused a dramatic decrease in phosphorylated forms of c-Met, ERK, AKT and p38. Foretinib led to a decrease in Bcl-2, and an increase in p27, Bax, Bim, cleaved PARP-1 and cleaved caspase-3. Thus, these findings highlight the antitumour impact of simultaneous suppression of c-Met and VEGFR2 signalling in GAC and its potential to enhance nanoparticle paclitaxel response. This therapeutic approach might lead to a clinically beneficial combination to increase GAC patients' survival.