- Browse by Subject
Browsing by Subject "c-FLIP"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item 4-(4-Chloro-2-methylphenoxy)-N-hydroxybutanamide (CMH) targets mRNA of the c-FLIP variants and induces apoptosis in MCF-7 human breast cancer cells(Springer US, 2010-09) Bijangi-Vishehsaraei, Khadijeh; Huang, Su; Safa, Ahmad R.; Saadatzadeh, Mohammad Reza; Murphy, Michael P.; Department of Pharmacology & Toxicology, School of MedicineCellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein (c-FLIP) is a major resistance factor for the tumor necrosis factor-related apoptosis-inducing ligand TRAIL and in drug resistance in human malignancies. c-FLIP is an antagonist of caspases-8 and -10, which inhibits apoptosis and is expressed as long (c-FLIPL) and short (c-FLIPS) splice forms. c-FLIP is often overexpressed in various human cancers, including breast cancer. Several studies have shown that silencing c-FLIP by specific siRNAs sensitizes cancer cells to TRAIL and anticancer agents. However, systemic use of siRNA as a therapeutic agent is not practical at present. In order to reduce or inhibit c-FLIP expression, small molecules are needed to allow targeting c-FLIP without inhibiting caspases-8 and -10. We used a small molecule inhibitor of c-FLIP, 4-(4-chloro-2-methylphenoxy)-N-hydroxybutanamide (CMH), and show that CMH, but not its inactive analog, downregulated c-FLIPL and c-FLIPS mRNA and protein levels, caused poly(ADP-ribose) polymerase (PARP) degradation, reduced cell survival, and induced apoptosis in MCF-7 breast cancer cells. These results revealed that c-FLIP is a critical apoptosis regulator that can serve as a target for small molecule inhibitors that downregulate its expression and serve as effective targeted therapeutics against breast cancer cells.Item c-FLIP, a Novel Biomarker for Cancer Prognosis, Immunosuppression, Alzheimer’s Disease, Chronic Obstructive Pulmonary Disease (COPD), and a Rationale Therapeutic Target(Taylor & Francis, 2019) Safa, Ahmad R.; Kamocki, Krzysztof; Saadatzadeh, M. Reza; Bijangi-Vishehsaraei, Khadijeh; Pharmacology and Toxicology, School of MedicineDysregulation of c-FLIP (cellular FADD-like IL-1β-converting enzyme inhibitory protein) has been shown in several diseases including cancer, Alzheimer’s disease, and chronic obstructive pulmonary disease (COPD). c-FLIP is a critical anti-cell death protein often overexpressed in tumors and hematological malignancies and its increased expression is often associated with a poor prognosis. c-FLIP frequently exists as long (c-FLIPL) and short (c-FLIPS) isoforms, regulates its anti-cell death functions through binding to FADD (FAS associated death domain protein), an adaptor protein known to activate caspases-8 and -10 and links c-FLIP to several cell death regulating complexes including the death-inducing signaling complex (DISC) formed by various death receptors. c-FLIP also plays a critical role in necroptosis and autophagy. Furthermore, c-FLIP is able to activate several pathways involved in cytoprotection, proliferation, and survival of cancer cells through various critical signaling proteins. Additionally, c-FLIP can inhibit cell death induced by several chemotherapeutics, anti-cancer small molecule inhibitors, and ionizing radiation. Moreover, c-FLIP plays major roles in aiding the survival of immunosuppressive tumor-promoting immune cells and functions in inflammation, Alzheimer’s disease (AD), and chronic obstructive pulmonary disease (COPD). Therefore, c-FLIP can serve as a versatile biomarker for cancer prognosis, a diagnostic marker for several diseases, and an effective therapeutic target. In this article, we review the functions of c-FLIP as an anti-apoptotic protein and negative prognostic factor in human cancers, and its roles in resistance to anticancer drugs, necroptosis and autophagy, immunosuppression, Alzheimer’s disease, and COPD.Item Cellular FLICE-like inhibitory protein (C-FLIP): a novel target for cancer therapy(Bentham Science, 2008-02) Safa, Ahmad R.; Day, Travis W.; Wu, Ching-Huang; Department of Pharmacology and Toxicology, IU School of MedicineCellular FLICE-like inhibitory protein (c-FLIP) has been identified as a protease-dead, procaspase-8-like regulator of death ligand-induced apoptosis, based on observations that c-FLIP impedes tumor necrosis factor-alpha (TNF-alpha), Fas-L, and TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by binding to FADD and/or caspase-8 or -10 in a ligand-dependent fashion, which in turn prevents death-inducing signaling complex (DISC) formation and subsequent activation of the caspase cascade. c-FLIP is a family of alternatively spliced variants, and primarily exists as long (c-FLIP(L)) and short (c-FLIP(S)) splice variants in human cells. Although c-FLIP has apoptogenic activity in some cell contexts, which is currently attributed to heterodimerization with caspase-8 at the DISC, accumulating evidence indicates an anti-apoptotic role for c-FLIP in various types of human cancers. For example, small interfering RNAs (siRNAs) that specifically knocked down expression of c-FLIP(L) in diverse human cancer cell lines, e.g., lung and cervical cancer cells, augmented TRAIL-induced DISC recruitment, and thereby enhanced effector caspase stimulation and apoptosis. Therefore, the outlook for the therapeutic index of c-FLIP-targeted drugs appears excellent, not only from the efficacy observed in experimental models of cancer therapy, but also because the current understanding of dual c-FLIP action in normal tissues supports the notion that c-FLIP-targeted cancer therapy will be well tolerated. Interestingly, Taxol, TRAIL, as well as several classes of small molecules induce c-FLIP downregulation in neoplastic cells. Efforts are underway to develop small-molecule drugs that induce c-FLIP downregulation and other c-FLIP-targeted cancer therapies. In this review, we assess the outlook for improving cancer therapy through c-FLIP-targeted therapeutics.Item Differential Effect of Anti-apoptotic Genes Bcl-xL and c-FLIP on Sensitivity of MCF-7 Breast Cancer Cells to Paclitaxel and Docetaxel(International Institute of Anticancer Research, 2005-05-01) Wang, Zhuo; Goulet, Robert; Stanton, Katie J.; Sadaria, Miral; Nakshatri, HarikrishnaBackground: Intrinsic or acquired resistance to chemotherapy is a major clinical problem leading to the fatality of patients with advanced and metastatic breast cancer. The overexpression of anti-apoptotic genes is believed to play a role in the resistance to chemotherapy. In the present study, we tested the sensitivity of MCF-7 breast cancer cells overexpressing anti-apoptotic genes TRAF-1, c-FLIP, Bcl-xL, cIAP-2 or Mn-SOD to paclitaxel and docetaxel. Materials and Methods: MTT and trypan blue dye exclusion assays were performed to examine the sensitivity of different cell lines to docetaxel and paclitaxel. Cell cycle analysis and carboxyfluorescein FLICA assay were employed to determine whether defects in the cell cycle arrest or apoptotic pathway are responsible for the resistance of cells overexpressing Bcl-xL or c-FLIP. Caspase 8 and 9 activities were measured in cells overexpressing Bcl-xL or c-FLIP exposed to docetaxel and paclitaxel using fluorescent substrate cleavage assay. Results: MCF-7 cells overexpressing Bcl-xL but not TRAF-1, cIAP-2 or Mn-SOD were less sensitive to both paclitaxel and docetaxel compared to vector-transfected control cells. Resistance of Bcl-xL-overexpressing cells to taxanes correlated with the failure to activate caspase 9. 2-Methoxyantimycin A3, a chemical inhibitor of Bcl-xL, sensitized Bcl-xL-overexpressing cells to paclitaxel and docetaxel, which suggests the drugs that inhibit Bcl-xL activity can be used as sensitizers to taxanes. MCF-7 cells overexpressing c-FLIP were less sensitive to paclitaxel but not to docetaxel. Paclitaxel failed to induce caspase 8 in c-FLIP-overexpressing cells. Conclusion: Because c-FLIP inhibits the extrinsic pathway of cell death whereas Bcl-xL inhibits the intrinsic pathway of cell death, these results suggest that overexpression of anti-apoptotic genes that inhibit either the extrinsic or intrinsic cell death pathways can reduce sensitivity of cancer cells to paclitaxel, whereas anti-apoptotic genes that inhibit only the intrinsic pathway reduce sensitivity to docetaxel.Item Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces(OAE, 2022-08-02) Safa, Ahmad R.; Pharmacology and Toxicology, School of MedicineResistance to anticancer agents and apoptosis results in cancer relapse and is associated with cancer mortality. Substantial data have provided convincing evidence establishing that human cancers emerge from cancer stem cells (CSCs), which display self-renewal and are resistant to anticancer drugs, radiation, and apoptosis, and express enhanced epithelial to mesenchymal progression. CSCs represent a heterogeneous tumor cell population and lack specific cellular targets, which makes it a great challenge to target and eradicate them. Similarly, their close relationship with the tumor microenvironment creates greater complexity in developing novel treatment strategies targeting CSCs. Several mechanisms participate in the drug and apoptosis resistance phenotype in CSCs in various cancers. These include enhanced expression of ATP-binding cassette membrane transporters, activation of various cytoprotective and survival signaling pathways, dysregulation of stemness signaling pathways, aberrant DNA repair mechanisms, increased quiescence, autophagy, increased immune evasion, deficiency of mitochondrial-mediated apoptosis, upregulation of anti-apoptotic proteins including c-FLIP [cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein], Bcl-2 family members, inhibitors of apoptosis proteins, and PI3K/AKT signaling. Studying such mechanisms not only provides mechanistic insights into these cells that are unresponsive to drugs, but may lead to the development of targeted and effective therapeutics to eradicate CSCs. Several studies have identified promising strategies to target CSCs. These emerging strategies may help target CSC-associated drug resistance and metastasis in clinical settings. This article will review the CSCs drug and apoptosis resistance mechanisms and how to target CSCs.Item Resistance to Cell Death and Its Modulation in Cancer Stem Cells(Begell, 2016) Safa, Ahmad R.; Department of Pharmacology and Toxicology, IU School of MedicineAccumulating evidence has demonstrated that human cancers arise from various tissues of origin that initiate from cancer stem cells (CSCs) or cancer-initiating cells. The extrinsic and intrinsic apoptotic pathways are dysregulated in CSCs, and these cells play crucial roles in tumor initiation, progression, cell death resistance, chemo- and radiotherapy resistance, and tumor recurrence. Understanding CSC-specific signaling proteins and pathways is necessary to identify specific therapeutic targets that may lead to the development of more efficient therapies selectively targeting CSCs. Several signaling pathways-including the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), maternal embryonic leucine zipper kinase (MELK), NOTCH1, and Wnt/Β-catenin&and expression of the CSC markers CD133, CD24, CD44, Oct4, Sox2, Nanog, and ALDH1A1 maintain CSC properties. Studying such pathways may help to understand CSC biology and lead to the development of potential therapeutic interventions to render CSCs more sensitive to cell death triggered by chemotherapy and radiation therapy. Moreover, recent demonstrations of dedifferentiation of differentiated cancer cells into CSC-like cells have created significant complexity in the CSCs hypothesis. Therefore, any successful therapeutic agent or combination of drugs for cancer therapy must eliminate not only CSCs but differentiated cancer cells and the entire bulk of tumor cells. This review article expands on the CSC hypothesis and paradigm with respect to major signaling pathways and effectors that regulate CSC apoptosis resistance. Moreover, selective CSC apoptotic modulators and their therapeutic potential for making tumors more responsive to therapy are discussed. The use of novel therapies, including small-molecule inhibitors of specific proteins in signaling pathways that regulate stemness, proliferation and migration of CSCs, immunotherapy, and noncoding microRNAs may provide better means of treating CSCs.Item Resistance to drugs and cell death in cancer stem cells (CSCs)(OAT, 2020) Safa, Ahmad R.; Pharmacology and Toxicology, School of MedicineHuman cancers emerge from cancer stem cells (CSCs), which are resistant to cancer chemotherapeutic agents, radiation, and cell death. Moreover, autophagy provides the cytoprotective effect which contributes to drug resistance in these cells. Furthermore, much evidence shows that CSCs cause tumor initiation, progression, metastasis, and cancer recurrence. Various signaling pathways including the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), maternal embryonic leucine zipper kinase (MELK), NOTCH1, and Wnt/β-catenin as well as the CSC markers maintain CSC properties. Several mechanisms including overexpression of ABC multidrug resistance transporters, a deficiency in mitochondrial-mediated apoptosis, upregulation of c-FLIP, overexpression of anti-apoptotic Bcl-2 family members and inhibitors of apoptosis proteins (IAPs), and PI3K/AKT signaling contribute to enhancing resistance to chemotherapeutic drugs and cell death induction in CSCs in various cancers. Studying such pathways may help provide detailed understanding of CSC mechanisms of resistance to chemotherapeutic agents and apoptosis and may lead to the development of effective therapeutics to eradicate CSCs.Item Roles of c-FLIP in Apoptosis, Necroptosis, and Autophagy(OMICS, 2013) Safa, Ahmad R.; Department of Pharmacology and Toxicology, IU School of MedicineCellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein (c-FLIP) is a major antiapoptotic protein and an important cytokine and chemotherapy resistance factor that suppresses cytokine- and chemotherapyinduced apoptosis. c-FLIP is expressed as long (c-FLIPL), short (c-FLIPS), and c-FLIPR splice variants in human cells. c-FLIP binds to FADD and/or caspase-8 or -10 and TRAIL receptor 5 (DR5). This interaction in turn prevents Death-Inducing Signaling Complex (DISC) formation and subsequent activation of the caspase cascade. c-FLIPL and c-FLIPS are also known to have multifunctional roles in various signaling pathways, as well as activating and/ or upregulating several cytoprotective and pro-survival signaling proteins including Akt, ERK, and NF-κB. In addition to its role in apoptosis, c-FLIP is involved in programmed necroptosis (necrosis) and autophagy. Necroptosis is regulated by the Ripoptosome, which is a signaling intracellular cell death platform complex. The Ripoptosome contains receptor-interacting protein-1/Receptor-Interacting Protein-3 (RIP1), caspase-8, caspase-10, FADD, and c-FLIP isoforms involved in switching apoptotic and necroptotic cell death. c-FLIP regulates the Ripoptosome; in addition to its role in apoptosis, it is therefore also involved in necrosis. c-FLIPL attenuates autophagy by direct acting on the autophagy machinery by competing with Atg3 binding to LC3, thereby decreasing LC3 processing and inhibiting autophagosome formation. Upregulation of c-FLIP has been found in various tumor types, and its silencing has been shown to restore apoptosis triggered by cytokines and various chemotherapeutic agents. Hence, c-FLIP is an important target for cancer therapy. This review focuses on (1) the anti-apoptotic role of c-FLIP splice variants in preventing apoptosis and inducing cytokine and chemotherapy drug resistance, as well as its roles in necrosis and autophagy, and (2) modulation of c-FLIP expression as a means to enhance apoptosis and modulate necrosis and autophagy in cancer cells.Item Targeting the Anti-Apoptotic Protein c-FLIP for Cancer Therapy(MDPI, 2011-03-29) Safa, Ahmad R.; Pollok, Karen E.; Pharmacology and Toxicology, School of MedicineCellular FLICE (FADD-like IL-1beta-converting enzyme)-inhibitory protein (c-FLIP) is a major resistance factor and critical anti-apoptotic regulator that inhibits tumor necrosis factor-alpha (TNF-alpha), Fas-L, and TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis as well as chemotherapy-triggered apoptosis in malignant cells. c-FLIP is expressed as long (c-FLIPL), short (c-FLIPS), and c-FLIPR splice variants in human cells. c-FLIP binds to FADD and/or caspase-8 or -10 in a ligand-dependent and-independent fashion, which in turn prevents death-inducing signaling complex (DISC) formation and subsequent activation of the caspase cascade. Moreover, c-FLIPL and c-FLIPS are known to have multifunctional roles in various signaling pathways, as well as activating and/or upregulating several cytoprotective signaling molecules. Upregulation of c-FLIP has been found in various tumor types, and its downregulation has been shown to restore apoptosis triggered by cytokines and various chemotherapeutic agents. Hence, c-FLIP is an important target for cancer therapy. For example, small interfering RNAs (siRNAs) that specifically knockdown the expression of c-FLIPL in diverse human cancer cell lines augmented TRAIL-induced DISC recruitment and increased the efficacy of chemotherapeutic agents, thereby enhancing effector caspase stimulation and apoptosis. Moreover, small molecules causing degradation of c-FLIP as well as decreasing mRNA and protein levels of c-FLIPL and c-FLIPS splice variants have been found, and efforts are underway to develop other c-FLIP-targeted cancer therapies. This review focuses on (1) the functional role of c-FLIP splice variants in preventing apoptosis and inducing cytokine and drug resistance; (2) the molecular mechanisms that regulate c-FLIP expression; and (3) strategies to inhibit c-FLIP expression and function.