- Browse by Subject
Browsing by Subject "biomass"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Distributed Bio-Hydrogen Refueling Stations(David Publishing, 2016) Schubert, Peter J.; Electrical and Computer Engineering, School of Engineering and TechnologyHydrogen fuel cell cars are now available for lease and for sale. Renewable hydrogen fuel can be produced from water via electrolysis, or from biomass via gasification. Electrolysis is power-hungry with high demand from solar or wind power. Gasification, however, can be energy self-sufficient using a recently-patented thermochemical conversion technology known as I-HPG (indirectly-heated pyrolytic gasification). I-HPG produces a tar-free syngas from non-food woody biomass. This means the balance of plant can be small, so the overall system is economical at modest sizes. This makes it possible to produce renewable hydrogen from local agricultural residues; sufficient to create distributed refueling stations wherever there is feedstock. This work describes the specifics of a novel bio-hydrogen refueling station whereby the syngas produced has much of the hydrogen extracted with the remainder powering a generator to provide the electric power to the I-HPG system. Thus the system runs continuously. When paired with another new technology, moderate-pressure storage of hydrogen in porous silicon, there is the potential to also power the refueling operation. Such systems can be operated independently. It is even possible to design an energy self-sufficient farm where all electric power, heat, and hydrogen fuel is produced from the non-food residues of agricultural operations. No water is required, and the carbon footprint is negative, or at least neutral.Item Global land-use and carbon emission implications from biochar application to cropland in the United States(Elsevier, 2020-06) Dumortier, Jerome; Dokoohaki, Hamze; Elobeid, Amani; Hayes, Dermot J.; Laird, David; Miguez, Fernando E.; School of Public and Environmental AffairsBiochar has the potential to increase crop yields when applied to agricultural land. We integrate agronomic and economic simulation models to determine the expected yield increase from biochar applications in the United States. We calculate the location-specific willingness to pay of U.S. farmers to apply biochar to their cropland if biochar increases yields over 20 years. In addition to the potential benefit of higher revenue for farmers, biochar applications also have policy implications if biochar production is combined with bio-fuel production or used to reduce greenhouse gas emissions from indirect land-use change. Thus, the results are then combined with an agricultural outlook model to determine the effects on global land-use change and net carbon emissions. Our results indicate that biochar application is most profitable for croplands in the Southeast U.S. due to the combination of high yield increases and availability of biomass to produce biochar. An increase in U.S. yields above trend by 1% for corn, soybeans, and wheat would decrease net total global emissions by 25–87 Tg of CO2-equivalent.Item Large Ecosystem Service Benefits of Assisted Natural Regeneration(Wiley, 2018-02-01) Yang, Yusheng; Wang, Lixin; Yang, Zhijie; Xu, Chao; Xie, Jingsheng; Chen, Guangshui; Lin, Chengfang; Guo, Jianfen; Liu, Xiaofei; Xiong, Decheng; Lin, Weisheng; Chen, Shidong; He, Zongming; Lin, Kaimiao; Jiang, Miaohua; Lin, Teng-Chiu; Earth Sciences, School of ScienceChina manages the largest monoculture plantations in the world, with 24% being Chinese fir plantations. Maximizing the ecosystem services of Chinese fir plantations has important implications in global carbon cycle and biodiversity protection. Assisted natural regeneration (ANR) is a practice to convert degraded lands into more productive forests with great ecosystems services. However, the quantitative understanding of ANR ecosystem service benefits is very limited. We conducted a comprehensive field manipulation experiment to evaluate the ANR potentials. We quantified and compared key ecosystem services including surface runoff, sediment yield, dissolved organic carbon export, plant diversity, and aboveground carbon accumulation of ANR of secondary forests dominated by Castanopsis carlesii to that of Chinese fir and C. carlesii plantations. Our results showed that ANR of C. carlesii forest reduced surface runoff and sediment yield up to 50% compared with other young plantations in the first 3 years and substantially increased plant diversity. ANR also reduced the export of dissolved organic carbon by 60–90% in the first 2 years. Aboveground biomass of the young ANR forest was approximately 3–4 times of that of other young plantations, while aboveground biomass of mature ANR forests was approximately 1.4 times of that of mature Chinese fir plantations of the same age. If all Chinese fir plantations in China were replaced by ANR forests, potentially 0.7 Pg more carbon will be stored in aboveground in one rotation (25 years). The results indicate that ANR triggers positive feedbacks among soil and water conservation, biodiversity protection, and biomass accumulation and thereby enhances ecosystem services.Item Removing Crop Residues Without Hurting Soil(2009) Schubert, Peter J.Agricultural residue, the organic matter left over after grain harvesting, has the potential to replace a large fraction of our petroleum and coal use, making this a significant national benefit. However, agricultural residues also serve a useful function in farm soils, so it is important to understand the impact of removing some of these residues.