ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "biomarker"

Now showing 1 - 10 of 18
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Alkaline phosphatase in metastatic castration-resistant prostate cancer: reassessment of an older biomarker
    (Future Medicine, 2018-06-21) Heinrich, Daniel; Bruland, Øyvind; Guise, Theresa A; Suzuki, Hiroyoshi; Sartor, Oliver; Medicine, School of Medicine
    Since most patients with metastatic castration-resistant prostate cancer (mCRPC) have bone metastases, it is important to understand the potential impact of therapies on prognostic biomarkers, such as ALP. Clinical studies involving mCRPC life-prolonging agents (i.e., sipuleucel-T, abiraterone, enzalutamide, docetaxel, cabazitaxel, and radium-223) have shown that baseline ALP level is prognostic for overall survival, and may be a better prognostic marker for overall survival than prostate-specific antigen in patients with bone-dominant mCRPC. Mechanism of action differences between therapies may partly explain ALP dynamics during treatment. ALP changes can be interpreted within the context of other parameters while monitoring disease activity to better understand the underlying pathology. This review evaluates the current role of ALP in mCRPC.
  • Loading...
    Thumbnail Image
    Item
    Altered STAT4 isoform expression in patients with inflammatory bowel disease.
    (Wolters Kluwer, 2015-10) Jabeen, Rukhsana; Miller, Lucy; Yao, Weiguo; Gupta, Sandeep; Steiner, Steven; Kaplan, Mark H.; Department of Pediatrics, IU School of Medicine
    BACKGROUND & AIMS: Crohn’s disease (CD) and ulcerative colitis (UC) are major forms of inflammatory bowel disease (IBD) and pathogenesis involves a complex interplay between genetic, environmental and immunological factors. We evaluated isoform expression of the IL-12-activated transcription factor STAT4 in children with CD and UC. METHODS: We performed a study where we collected biopsy samples from both newly diagnosed CD and UC patients. We further collected blood samples from newly diagnosed CD and UC patients as well as patients who had a flare-up after being in clinical remission, and examined the ratios of STAT4β/STAT4α mRNA. In addition to STAT4 isoforms we measured the expression of the cytokines TNFα, IFNγ, GM-CSF and IL-17 using PCR of biopsy samples and multiplex analysis of patient serum samples. RESULTS: Ratios of STAT4β/STAT4α were increased in specific GI tract segments in both CD and UC patients that correlate with location and severity of inflammation. In contrast, we did not observe changes in STAT4β/STAT4α ratios in biopsy specimens from eosinophilic esophagitis patients. We also observed increased STAT4β/STAT4α ratios in the peripheral blood mononuclear cells of UC and CD patients, compared to healthy controls. Ratios were normalized after patient treatment with steroids. CONCLUSIONS: Collectively, these data indicate that STAT4 isoforms could be an important non-invasive biomarker in the diagnosis and treatment of IBD, and that expression of these isoforms might provide further insight into the pathogenesis of IBD.
  • Loading...
    Thumbnail Image
    Item
    A Bayesian adaptive marker‐stratified design for molecularly targeted agents with customized hierarchical modeling
    (Wiley, 2019-07) Zang, Yong; Guo, Beibei; Han, Yan; Cao, Sha; Zhang, Chi; Biostatistics, School of Public Health
    It is well known that the treatment effect of a molecularly targeted agent (MTA) may vary dramatically, depending on each patient's biomarker profile. Therefore, for a clinical trial evaluating MTA, it is more reasonable to evaluate its treatment effect within different marker subgroups rather than evaluating the average treatment effect for the overall population. The marker‐stratified design (MSD) provides a useful tool to evaluate the subgroup treatment effects of MTAs. Under the Bayesian framework, the beta‐binomial model is conventionally used under the MSD to estimate the response rate and test the hypothesis. However, this conventional model ignores the fact that the biomarker used in the MSD is, in general, predictive only for the MTA. The response rates for the standard treatment can be approximately consistent across different subgroups stratified by the biomarker. In this paper, we proposed a Bayesian hierarchical model incorporating this biomarker information into consideration. The proposed model uses a hierarchical prior to borrow strength across different subgroups of patients receiving the standard treatment and, therefore, improve the efficiency of the design. Prior informativeness is determined by solving a “customized” equation reflecting the physician's professional opinion. We developed a Bayesian adaptive design based on the proposed hierarchical model to guide the treatment allocation and test the subgroup treatment effect as well as the predictive marker effect. Simulation studies and a real trial application demonstrate that the proposed design yields desirable operating characteristics and outperforms the existing designs.
  • Loading...
    Thumbnail Image
    Item
    Characterization of Cerebral Blood Flow in Older Adults: A Potential Early Biomarker for Alzheimer's Disease
    (2022-04) Swinford, Cecily Gwinn; Risacher, Shannon L.; Saykin, Andrew J.; Apostolova, Liana G.; Wu, Yu-Chien; Gao, Sujuan
    Over 5 million older adults have Alzheimer's disease (AD) in the US, and this number is projected to double by 2050. Clinical trials of potential pharmacological treatments for AD have largely shown that once cognitive decline has occurred, targeting AD pathology in the brain does not improve cognition. Therefore, it is likely that the most effective treatments for AD will need to be administered before cognitive symptoms occur, necessitating a biomarker for the early, preclinical stages of AD. Cerebral blood flow (CBF) is a promising early biomarker for AD. CBF is decreased in individuals with AD compared to their normally aging counterparts, and it has been shown that CBF is altered in mild cognitive impairment (MCI) and earlier stages and may occur prior to amyloid or tau aggregation. In addition, CBF can be measured using arterial spin labeled (ASL) MRI, a noninvasive imaging technique that can be safely repeated over time to track prognosis or treatment efficacy. The complex temporal and spatial patterns of altered CBF over the course of AD, as well as the relationships between CBF and AD-specific and -nonspecific factors, will be critical to elucidate in order for CBF to be an effective early biomarker of AD. Here, we begin to characterize the relationships between CBF and risk factors, pathologies, and symptoms of AD. Chapter 1 is a systematic review of published literature that compares CBF in individuals with AD and MCI to CBF in cognitively normal (CN) controls and assesses the relationship between CBF and cognitive function. Chapter 2 reports our original research assessing the relationships between CBF, hypertension, and race/ethnicity in older adults without dementia from the the Indiana Alzheimer’s Disease Research Center (IADRC) and Alzheimer’s Disease Neuroimaging Initiative (ADNI). Chapter 3 reports our original research assessing the relationships between CBF and amyloid beta and tau aggregation measured with PET, as well as whether hypertension or APOEε4 positivity affects these relationships, in older adults without dementia from the IADRC. Chapter 4 reports our original research assessing the relationship between the spatial distribution of tau and subjective memory concerns.
  • Loading...
    Thumbnail Image
    Item
    Characterizing Gene and Protein Crosstalks in Subjects at Risk of Developing Alzheimer’s Disease: A New Computational Approach
    (MDPI, 2017-08-17) Padmanabhan, Kanchana; Nudelman, Kelly; Harenberg, Steve; Bello, Gonzalo; Sohn, Dongwha; Shpanskaya, Katie; Tiwari Dikshit, Priyanka; Yerramsetty, Pallavi S.; Tanzi, Rudolph E.; Saykin, Andrew J.; Petrella, Jeffrey R.; Doraiswamy, P. Murali; Samatova, Nagiza F.; Alzheimer’s Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of Medicine
    Alzheimer’s disease (AD) is a major public health threat; however, despite decades of research, the disease mechanisms are not completely understood, and there is a significant dearth of predictive biomarkers. The availability of systems biology approaches has opened new avenues for understanding disease mechanisms at a pathway level. However, to the best of our knowledge, no prior study has characterized the nature of pathway crosstalks in AD, or examined their utility as biomarkers for diagnosis or prognosis. In this paper, we build the first computational crosstalk model of AD incorporating genetics, antecedent knowledge, and biomarkers from a national study to create a generic pathway crosstalk reference map and to characterize the nature of genetic and protein pathway crosstalks in mild cognitive impairment (MCI) subjects. We perform initial studies of the utility of incorporating these crosstalks as biomarkers for assessing the risk of MCI progression to AD dementia. Our analysis identified Single Nucleotide Polymorphism-enriched pathways representing six of the seven Kyoto Encyclopedia of Genes and Genomes pathway categories. Integrating pathway crosstalks as a predictor improved the accuracy by 11.7% compared to standard clinical parameters and apolipoprotein E ε4 status alone. Our findings highlight the importance of moving beyond discrete biomarkers to studying interactions among complex biological pathways.
  • Loading...
    Thumbnail Image
    Item
    Cold response biomarker identification in strawberry
    (2018-07-17) Deitch, Zachary M.; Randall, Stephen
    Strawberry (Fragaria spp.) is an agricultural crop grown often in temperate regions that has high variability in its susceptibility to freezing injury. To breed cultivars for frost and freezing tolerance, identification of molecular markers associated with low temperature tolerance is advantageous. In this work, I investigated a high-throughput method for protein assays and western blotting. Success in streamlining these processes saves an immense amount of time and allows for the processing of more samples and obtaining larger datasets. Thirty-three octoploid varieties were tested for their accumulation of five different potential biomarkers in response to cold exposure. It was found that total dehydrin content, has the strongest potential to be reliable biomarkers for breeding programs. Previous work identified seven putative dehydrins in Fragaria, where two were purified and positively identified by mass spectrometry and determined to be COR47-like (SKn) and XERO2-like (YnSKn). This work demonstrated that cold tolerance positively correlated with dehydrin protein expression levels. To understand the cold-regulated expression of dehydrins as a function of cold exposure time, the levels of transcripts and corresponding proteins were examined in strongly cold tolerant (Alta) and lesser cold tolerant (FDP817, NCGR1363) Fragaria diploid genotypes. The COR47-like (SKn) and XERO2-like (YnSKn) dehydrins both had higher transcript accumulation and protein levels in the more cold tolerant line in comparison to the two less cold tolerant lines. Lack of correlation between transcript and resulting COR47 protein level in Alta were observed at several different timepoints, where protein accumulation preceded an increase in RNA. This trend was not seen with XERO2. This initiated an investigation to discover at what level COR47 is being regulated. First, the COR47 coding region was sequenced for all the genotypes to confirm against the predicted sequence. In addition, since two isoforms of the COR47 gene exist, and could possibly explain the discrepancy in transcript counts, primers were designed for both isoforms and RT-qPCR was performed to examine the transcripts of COR47 more closely. Through examination of the non-congruence of COR47 transcripts and protein, it was found that transcriptional mechanisms of regulation are not involved, and that post transcriptional and post-RNA splicing mechanisms are likely to be responsible for the observed trend in Alta. Conclusions from this work demonstrate that dehydrin transcripts and dehydrin protein accumulations are strong potential biomarkers for identifying low temperature tolerance in diploid strawberry.
  • Loading...
    Thumbnail Image
    Item
    Identification of Novel Biomarker and Therapeutic Target Candidates for Diagnosis and Treatment of Follicular Adenoma
    (International Institute of Anticancer Research, 2015-11) Lai, Xianyin; Chen, Shaoxiong; Department of Biochemistry and Molecular Biology, IU School of Medicine
    ollicular adenoma is a type of benign and encapsulated nodule in the thyroid gland, but some adenomas have the potential to progress to follicular carcinoma. Therefore, it is important to monitor the state and progress of follicular adenoma in the clinic and discover drug development targets for the treatment of follicular adenoma to prevent its worsening to follicular carcinoma. Currently, the study of biomarkers and therapeutic targets lacks applications of up-to-date technologies, including proteomics and bioinformatics. To discover novel protein biomarker and therapeutic target candidates, a liquid chromatography-tandem mass spectrometry approach was applied to directly compare follicular adenoma with normal thyroid tissue samples. The proteomics analysis revealed 114 protein biomarker candidates out of 1,780 identified and quantified proteins. A comprehensive approach to prioritize the biomarker candidates by category and rank revealed CD63, DDB1, TYMP, VDAC2, and DCXR as the top five biomarker candidates. Upstream regulator analysis using the Ingenuity Pathway Analysis (IPA) software discovered four therapeutic target candidates for follicular adenoma, including TGFB1, MYC, ANGPT2, and NFE2L2. This study provided biomarker and therapeutic target candidates for a follow-up study, which will facilitate monitoring and treatment of follicular adenoma.
  • Loading...
    Thumbnail Image
    Item
    Identification of novel biomarker candidates for immunohistochemical diagnosis to distinguish low-grade chondrosarcoma from enchondroma
    (Wiley, 2015-07) Lai, Xianyin; Chen, Shaoxiong; Department of Biochemistry and Molecular Biology, IU School of Medicine
    Chondrosarcoma is the third most common primary bone cancer, requiring surgical resection. However, differentiation of low-grade chondrosarcoma (grade 1) from enchondroma that is benign and only requires regular follow-up is one of the most frequent diagnostic dilemmas facing orthopedic oncologists in clinical management. Although multiple techniques are applied to make the distinction, immunohistochemistry is an important ancillary technique, especially when a histopathological stain of specimen must be obtained in order to guarantee an accurate confirmation. Currently, no adequate immunohistochemical diagnostic protein biomarkers are available to distinguish low-grade chondrosarcoma from enchondroma. To discover novel protein biomarker candidates, an LC-MS/MS approach was applied to directly compare formalin-fixed, paraffin-embedded low-grade chondrosarcoma with enchondroma tissue samples. The proteomics analysis revealed 17 protein biomarker candidates. A principle was developed to prioritize the candidates using category and ranking. An algorithm, prioritization index of biomarker candidates for immunohistochemistry on tissue specimens, was developed to rank the candidates inside each category. Using the proteomics data and bioinformatics results, the prioritization index of biomarker candidates for immunohistochemistry on tissue revealed periostin as a top candidate. Immunohistochemical staining of periostin in 23 low-grade chondrosarcoma and 31 enchondroma tissue specimens disclosed 87% specificity and 70% sensitivity.
  • Loading...
    Thumbnail Image
    Item
    An Investigation of Modifying Effects of Single Nucleotide Polymorphisms in Metabolism-related Genes on the Relationship between Peripheral Nerve Function and Mercury Levels in Urine and Hair
    (2012-02) Wang, Yi; Goodrich, Jaclyn M.; Werner, Robert; Gillespie, Brenda; Basu, Niladri; Franzblau, Alfred
    Mercury (Hg) is a potent neurotoxicant. We hypothesized that single nucleotide polymorphisms (SNPs) in genes coding glutathione-related proteins, selenoproteins and metallothioneins may modify the relationship of mercury biomarkers with changes in peripheral nerve function. Dental professionals (n=515) were recruited in 2009 and 2010. Sensory nerve function (onset latency, peak latency and amplitude) of the median, ulnar and sural nerves was recorded. Samples of urine, hair and DNA were collected. Covariates related to demographics, nerve function and elemental and methyl-mercury exposure were also collected. Subjects included 244 dentists (47.4%) and 269 non-dentists (52.2%; mostly dental hygienists and dental assistants). The mean mercury levels in urine (1.06 μg/L) and hair (0.51 μg/g) were not significantly different from the US general population (0.95 μg/L and 0.47 μg/g, respectively). In multivariate linear models predicting nerve function adjusting for covariates, only 3 out of a total of 504 models showed stable and statistically significant interaction of SNPs with mercury biomarkers. Overall, given the possibility of false positives, the results suggested little evidence of effect modification of the SNPs on the relationship between mercury biomarkers with peripheral nerve function at exposure levels that are relevant to the general US population.
  • Loading...
    Thumbnail Image
    Item
    Lead-Time Trajectory of CA19-9 as an Anchor Marker for Pancreatic Cancer Early Detection
    (Elsevier, 2021) Fahrmann, Johannes F.; Schmidt, C. Max; Mao, Xiangying; Irajizad, Ehsan; Loftus, Maureen; Zhang, Jinming; Patel, Nikul; Vykoukal, Jody; Dennison, Jennifer B.; Long, James P.; Do, Kim-Anh; Zhang, Jianjun; Chabot, John A.; Kluger, Michael D.; Kastrinos, Fay; Brais, Lauren; Babic, Ana; Jajoo, Kunal; Lee, Linda S.; Clancy, Thomas E.; Ng, Kimmie; Bullock, Andrea; Genkinger, Jeanine; Yip-Schneider, Michele T.; Maitra, Anirban; Wolpin, Brian M.; Hanash, Samir; Surgery, School of Medicine
    Background & Aims There is substantial interest in liquid biopsy approaches for cancer early detection among subjects at risk, using multi-marker panels. CA19-9 is an established circulating biomarker for pancreatic cancer; however, its relevance for pancreatic cancer early detection or for monitoring subjects at risk has not been established. Methods CA19-9 levels were assessed in blinded sera from 175 subjects collected up to 5 years before diagnosis of pancreatic cancer and from 875 matched controls from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. For comparison of performance, CA19-9 was assayed in blinded independent sets of samples collected at diagnosis from 129 subjects with resectable pancreatic cancer and 275 controls (100 healthy subjects; 50 with chronic pancreatitis; and 125 with noncancerous pancreatic cysts). The complementary value of 2 additional protein markers, TIMP1 and LRG1, was determined. Results In the PLCO cohort, levels of CA19-9 increased exponentially starting at 2 years before diagnosis with sensitivities reaching 60% at 99% specificity within 0 to 6 months before diagnosis for all cases and 50% at 99% specificity for cases diagnosed with early-stage disease. Performance was comparable for distinguishing newly diagnosed cases with resectable pancreatic cancer from healthy controls (64% sensitivity at 99% specificity). Comparison of resectable pancreatic cancer cases to subjects with chronic pancreatitis yielded 46% sensitivity at 99% specificity and for subjects with noncancerous cysts, 30% sensitivity at 99% specificity. For prediagnostic cases below cutoff value for CA19-9, the combination with LRG1 and TIMP1 yielded an increment of 13.2% in sensitivity at 99% specificity ( P = .031) in identifying cases diagnosed within 1 year of blood collection. Conclusion CA19-9 can serve as an anchor marker for pancreatic cancer early detection applications.
  • «
  • 1 (current)
  • 2
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University