- Browse by Subject
Browsing by Subject "bile acid metabolism"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Effective fecal microbiota transplantation for recurrent Clostridioides difficile infection in humans is associated with increased signalling in the bile acid-farnesoid X receptor-fibroblast growth factor pathway(Taylor & Francis, 2018-09-05) Monaghan, Tanya; Mullish, Benjamin H.; Patterson, Jordan; Wong, Gane KS; Marchesi, Julian R.; Xu, Huiping; Jilani, Tahseen; Kao, DinaThe mechanisms of efficacy for fecal microbiota transplantation (FMT) in treating recurrent Clostridioides difficile infection (rCDI) remain poorly defined, with restored gut microbiota-bile acid interactions representing one possible explanation. Furthermore, the potential implications for host physiology of these FMT-related changes in gut bile acid metabolism are also not well explored. In this study, we investigated the impact of FMT for rCDI upon signalling through the farnesoid X receptor (FXR)-fibroblast growth factor (FGF) pathway. Herein, we identify that in addition to restoration of gut microbiota and bile acid profiles, FMT for rCDI is accompanied by a significant, sustained increase in circulating levels of FGF19 and reduction in FGF21. These FGF changes were associated with weight gain post-FMT, to a level not exceeding the pre-rCDI baseline. Collectively, these data support the hypothesis that the restoration of gut microbial communities by FMT for rCDI is associated with an upregulated FXR-FGF pathway, and highlight the potential systemic effect of FMT.Item Serum metabolic signatures of primary biliary cirrhosis and primary sclerosing cholangitis(Wiley, 2015-01) Bell, Lauren N.; Wulff, Jacob; Comerford, Megan; Vuppalanchi, Raj; Chalasani, Naga; Department of Medicine, IU School of MedicineBACKGROUND & AIMS: A greater understanding of cholestatic disease is necessary to advance diagnostic tools and therapeutic options for conditions such as primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC). The purpose of this study was to determine and compare the serum metabolomes of patients with PBC (n = 18) or PSC (n = 21) and healthy controls (n = 10) and to identify metabolites that may differentiate these two cholestatic diseases. METHODS AND RESULTS: Using a mass spectrometry-based, non-targeted biochemical profiling approach, we identified 420 serum metabolites, 101 that differed significantly (P ≤ 0.05) between PBC and control groups, 115 that differed significantly between PSC and control groups, and 56 that differed significantly between PSC and PBC groups. Random forest classification analysis was able to distinguish patients with PBC or PSC with 95% accuracy with selected biochemicals reflective of protein and amino acid metabolism identified as the major contributors. Metabolites related to bile acid metabolism, lipid metabolism, inflammation, and oxidative stress/lipid peroxidation were also identified as differing significantly when comparing the disease groups and controls, with some of these pathways differentially affected in the PBC and PSC groups. CONCLUSION: In this study, we identified novel metabolic changes associated with cholestatic disease that were both consistent and different between PBC and PSC. Validation studies in larger patient cohorts are required to determine the utility of these biochemical markers for diagnosis and therapeutic monitoring of patients with PBC and PSC.