- Browse by Subject
Browsing by Subject "bicyclists"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Development of Bicycle Surrogate for Bicyclist Pre-Collision System Evaluation(SAE, 2016-04) Yi, Qiang; Chien, Stanley; Brink, Jason; Niu, Wensen; Li, Lingxi; Chen, Yaobin; Chen, Chi-Chen; Sherony, Rini; Takahashi, Hiroyuki; Department of Electrical and Computer Engineering, School of Engineering and TechnologyAs part of active safety systems for reducing bicyclist fatalities and injuries, Bicyclist Pre-Collision System (BPCS), also known as Bicyclist Autonomous Emergency Braking System, is being studied currently by several vehicles manufactures. This paper describes the development of a surrogate bicyclist which includes a surrogate bicycle and a surrogate bicycle rider to support the development and evaluation of BPCS. The surrogate bicycle is designed to represent the visual and radar characteristics of real bicyclists in the United States. The size of bicycle surrogate mimics the 26 inch adult bicycle, which is the most popular adult bicycle sold in the US. The radar cross section (RCS) of the surrogate bicycle is designed based on RCS measurement of the real adult sized bicycles. The surrogate bicycle is constructed with detachable components with shatter resistant material to prevent structural damage during a collision, and matches the look and RCS of a real 26 inch mountain bicycle from all 360 degree angles. The surrogate bicycle rider is a 168 cm tall adult with CNC machined realistic body shape. The skin of the surrogate bicycle rider has the RCS of a real human skin. Combined skin with realistic body shape, the surrogate bicyclist has the RCS matching to that of a same sized real human from 360 degree angles in the view of 77GHz automotive radar. The surrogate bicyclist has articulated leg motion which is important for micro Doppler sensing and can be supported on a sled or a mobile carrier. It can be moved at a speed of 20 mph and can be collided by vehicles from any direction and be reassembled in less than 5 minutes.Item Pedestrian/Bicyclist Limb Motion Analysis from 110-Car TASI Video Data for Autonomous Emergency Braking Testing Surrogate Development(SAE, 2016-04) Sherony, Rini; Tian, Renran; Chien, Stanley; Fu, Li; Chen, Yaobin; Takahashi, Hiroyuki; Department of Engineering Technology, School of Engineering and TechnologyMany vehicles are currently equipped with active safety systems that can detect vulnerable road users like pedestrians and bicyclists, to mitigate associated conflicts with vehicles. With the advancements in technologies and algorithms, detailed motions of these targets, especially the limb motions, are being considered for improving the efficiency and reliability of object detection. Thus, it becomes important to understand these limb motions to support the design and evaluation of many vehicular safety systems. However in current literature, there is no agreement being reached on whether or not and how often these limbs move, especially at the most critical moments for potential crashes. In this study, a total of 832 pedestrian walking or cyclist biking cases were randomly selected from one large-scale naturalistic driving database containing 480,000 video segments with a total size of 94TB, and then the 832 video clips were analyzed focusing on their limb motions. We modeled the pedestrian/bicyclist limb motions in four layers: (1) the percentages of pedestrians and bicyclists who have limb motions when crossing the road; (2) the averaged action frequency and the corresponding distributions on when there are limb motions; (3) comparisons of the limb motion behavior between crossing and non-crossing cases; and (4) the effects of seasons on the limb motions when the pedestrians/bicyclists are crossing the road. The results of this study can provide empirical foundations supporting surrogate development, benefit analysis, and standardized testing of vehicular pedestrian/bicyclist detection and crash mitigation systems.