- Browse by Subject
Browsing by Subject "bicycles"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Analysis of Potential Co-Benefits for Bicyclist Crash Imminent Braking Systems(IEEE, 2017-10) Good, David H.; Krutilla, Kerry; Chien, Stanley; Li, Lingxi; Chen, Yaobin; Electrical and Computer Engineering, School of Engineering and TechnologyIn the US, the number of traffic fatalities has had a long term downward trend as a result of advances in the crash worthiness of vehicles. However, these improvements in crash worthiness do little to protect other vulnerable road users such as pedestrians or bicyclists. Several manufacturers have developed a new generation of crash avoidance systems that attempt to recognize and mitigate imminent crashes with non-motorists. While the focus of these systems has been on pedestrians where they can make meaningful contributions to improved safety [1], recent designs of these systems have recognized mitigating bicyclist crashes as a potential co-benefit. This paper evaluates the performance of one system that is currently available for consumer purchase. Because the vehicle manufacturer does not claim effectiveness for their system under all crash geometries, we focus our attention on the crash scenario that has the highest social cost in the US: the cyclist and vehicle on parallel paths being struck from behind. Our analysis of co benefits examines the ability to reduce three measures: number of crashes, fatalities, and a comprehensive measure for social cost that incorporates morbidity and mortality. Test track simulations under realistic circumstances with a realistic surrogate bicyclist target are conducted. Empirical models are developed for system performance and potential benefits for injury and fatality reduction. These models identify three key variables in the analysis: vehicle speed, cyclist speed and cyclist age as key determinants of potential co-benefits. We find that the evaluated system offers only limited benefits for any but the oldest bicycle riders for our tested scenario.Item Challenges in Monitoring Regional Trail(Sage, 2019) Lindsey, Greg; Singer-Berk, Lila; Wilson, Jeffrey S.; Oberg, Eric; Hadden-Loh, Tracy; Geography, School of Liberal ArtsThis study reports traffic monitoring results at 30 locations on a 972-mi shared-use trail network across the east-central United States. We illustrate challenges in adapting the principles in the Federal Highway Administration’s Traffic Monitoring Guide to a regional trail network. We make four contributions: 1) we use factor analysis and k-means clustering to implement a stratified random process for selecting monitoring sites; 2) we illustrate quality assurance procedures and the challenges of obtaining valid results from a multi-state monitoring system; 3) we describe variation in trail traffic volumes across five land use classes in response to daily weather and seasons; and 4) we report two performance measures for the network: annual average daily trail traffic and trail miles traveled. The Rails to Trails Conservancy deployed passive infrared traffic monitors in 2015 through 2017. Site-specific regression models were used to impute missing daily traffic volumes. The effects of weather were consistent across land use classes but the effects of temporal variables, including weekend and season of year, varied. A plan for short-duration monitoring is presented. Results confirm the FHWA monitoring principles and the difficulties of implementing them regionally.