- Browse by Subject
Browsing by Subject "bearing wear"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Contemporary Dual Mobility Head Penetration at Five Years: Concern for the Additional Convex Bearing Surface?(Elsevier, 2018) Deckard, Evan R.; Azzam, Khalid A.; Meneghini, R. Michael; Orthopaedic Surgery, School of MedicineBackground Dual mobility (DM) bearings are increasingly popular and second-generation designs contain highly cross-linked polyethylene. The purpose of this study is to report head penetration rates in modern DM bearings. Methods A review of 63 consecutive DM bearings was performed. Radiographs were analyzed for head penetration using Martell methodology at regular postoperative intervals. Results Thirty-four DM bearings were analyzed. Mean linear head penetration was 1.59 mm/y at 1 year, 1.07 mm/y at 2 years, and 0.27 mm/y at 5 years following an exponential regression model (R2 = 0.999). Mean volumetric wear was 783 mm3/y at 1 year, 555 mm3/y at 2 years, and 104 mm3/y at 5 years following an exponential regression model (R2 = 0.986). Conclusion Initial head penetration of DM bearings is larger than contemporary cross-linked polyethylene bearings; however, rates approach steady state after 2 years, analogous to traditional bearings. The larger “bedding-in” head penetration may be due to the additional convex bearing surface, creating 2 surfaces for deformation/wear.Item Femoral Head Penetration Rates of Second-Generation Sequentially Annealed Highly Cross-Linked Polyethylene at Minimum Five Years(Elsevier, 2019) Deckard, Evan R.; Meneghini, R. Michael; Orthopaedic Surgery, School of MedicineBackground Highly cross-linked polyethylene (HXLPE) liners in total hip arthroplasty (THA) have demonstrated decreased wear rates, resilience to cup orientation, and reduced osteolysis compared to conventional polyethylene. Sequential irradiation and annealing below the melting temperature is unique compared to most HXLPE which is irradiated and remelted. This study purpose is to provide minimum 5-year femoral head penetration rates of sequentially annealed HXLPE in primary THA. Methods A retrospective review of a prospectively collected database identified 198 consecutive, cementless primary THAs utilizing sequentially annealed HXLPE (X3; Stryker, Mahwah, NJ). Operative technique was standardized. Radiographs were analyzed utilizing the Martell method with minimum 5-year and 1-year radiographs as baseline to minimize the initial bedding-in period. Results Seventy-seven hips with minimum 5-year follow-up were analyzed. Mean steady state linear and volumetric head penetration rates were 0.095 mm/y and 76 mm3/y, respectively. Volumetric head penetration was significantly less for 32-mm compared to 36-mm (P = .028). In addition, less head penetration was observed for ceramic 32-mm heads at nearly half the rate compared to cobalt-chromium 36-mm heads (P ≥ .092). No correlations existed between penetration rates and age, body mass index, University of California Los Angeles Activity Level, polyethylene thickness, cup inclination, or anteversion (P ≥ .10). No radiographic osteolysis was observed. Conclusion Surprisingly, linear head penetration rates of sequentially annealed HXLPE were nearly identical to the osteolysis threshold for conventional polyethylene and greater than reports of irradiated and remelted HXLPE. Furthermore, these data corroborate reports that HXLPE is resilient to cup orientation and demographic variables. Longer term follow-up is recommended.