ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "autonomous embedded platform"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Real-Time 3-D Segmentation on An Autonomous Embedded System: using Point Cloud and Camera
    (IEEE, 2019-07) Katare, Dewant; El-Sharkawy, Mohamed; Electrical and Computer Engineering, School of Engineering and Technology
    Present day autonomous vehicle relies on several sensor technologies for it's autonomous functionality. The sensors based on their type and mounted-location on the vehicle, can be categorized as: line of sight and non-line of sight sensors and are responsible for the different level of autonomy. These line of sight sensors are used for the execution of actions related to localization, object detection and the complete environment understanding. The surrounding or environment understanding for an autonomous vehicle can be achieved by segmentation. Several traditional and deep learning related techniques providing semantic segmentation for an input from camera is already available, however with the advancement in the computing processor, the progression is on developing the deep learning application replacing traditional methods. This paper presents an approach to combine the input of camera and lidar for semantic segmentation purpose. The proposed model for outdoor scene segmentation is based on the frustum pointnet, and ResNet which utilizes the 3d point cloud and camera input for the 3d bounding box prediction across the moving and non-moving object and thus finally recognizing and understanding the scenario at the point-cloud or pixel level. For real time application the model is deployed on the RTMaps framework with Bluebox (an embedded platform for autonomous vehicle). The proposed architecture is trained with the CITYScpaes and the KITTI dataset.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University