- Browse by Subject
Browsing by Subject "autoimmunity"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Cell Signaling Pathways that Regulate Ag Presentation(American Association of Immunologists, 2016-10-15) Brutkiewicz, Randy R.; Microbiology and Immunology, School of MedicineCell signaling pathways regulate much in the life of a cell: from shuttling cargo through intracellular compartments and onto the cell surface, how it should respond to stress, protecting itself from harm (environmental insults or infections), to ultimately, death by apoptosis. These signaling pathways are important for various aspects of the immune response as well. However, not much is known in terms of the participation of cell signaling pathways in Ag presentation--a necessary first step in the activation of innate and adaptive T cells. In this brief review, I will discuss the known signaling molecules (and pathways) that regulate how Ags are presented to T cells and the mechanism(s) if identified. Studies in this area have important implications in vaccine development and new treatment paradigms against infectious diseases, autoimmunity and cancer.Item The ETS family transcription factors Etv5 and PU.1 function in parallel to promote Th9 cell development(American Association of Immunologists, 2016-09-15) Koh, Byunghee; Hufford, Matthew M; Pham, Duy; Olson, Matthew R.; Wu, Tong; Jabeen, Rukhsana; Sun, Xin; Kaplan, Mark H.; Microbiology and Immunology, School of MedicineThe IL-9-secreting Th9 subset of CD4 T helper cells develop in response to an environment containing IL-4 and TGFβ, promoting allergic disease, autoimmunity, and resistance to pathogens. We previously identified a requirement for the ETS family transcription factor PU.1 in Th9 development. In this report we demonstrate that the ETS transcription factor ETV5 promotes IL-9 production in Th9 cells by binding and recruiting histone acetyltransferases to the Il9 locus at sites distinct from PU.1. In cells that are deficient in both PU.1 and ETV5 there is lower IL-9 production than in cells lacking either factor alone. In vivo loss of PU.1 and ETV5 in T cells results in distinct affects on allergic inflammation in the lung, suggesting that these factors function in parallel. Together, these data define a role for ETV5 in Th9 development and extend the paradigm of related transcription factors having complementary functions during differentiation.Item Peroxisome Proliferator-activated Receptor-γ Activation Augments the β-Cell Unfolded Protein Response and Rescues Early Glycemic Deterioration and β Cell Death in Non-obese Diabetic Mice(American Society for Biochemistry and Molecular Biology, 2016-10-21) Maganti, Aarthi V.; Tersey, Sarah A.; Syed, Farooq; Nelson, Jennifer B.; Colvin, Stephanie C.; Maier, Bernhard; Mirmira, Raghavendra G.; Biochemistry and Molecular Biology, School of MedicineType 1 diabetes is an autoimmune disorder that is characterized by a failure of the unfolded protein response in islet β cells with subsequent endoplasmic reticulum stress and cellular death. Thiazolidinediones are insulin sensitizers that activate the nuclear receptor PPAR-γ and have been shown to partially ameliorate autoimmune type 1 diabetes in humans and non-obese diabetic (NOD) mice. We hypothesized that thiazolidinediones reduce β cell stress and death independently of insulin sensitivity. To test this hypothesis, female NOD mice were administered pioglitazone during the pre-diabetic phase and assessed for insulin sensitivity and β cell function relative to controls. Pioglitazone-treated mice showed identical weight gain, body fat distribution, and insulin sensitivity compared with controls. However, treated mice showed significantly improved glucose tolerance with enhanced serum insulin levels, reduced β cell death, and increased β cell mass. The effect of pioglitazone was independent of actions on T cells, as pancreatic lymph node T cell populations were unaltered and T cell proliferation was unaffected by pioglitazone. Isolated islets of treated mice showed a more robust unfolded protein response, with increases in Bip and ATF4 and reductions in spliced Xbp1 mRNA. The effect of pioglitazone appears to be a direct action on β cells, as islets from mice treated with pioglitazone showed reductions in PPAR-γ (Ser-273) phosphorylation. Our results demonstrate that PPAR-γ activation directly improves β cell function and survival in NOD mice by enhancing the unfolded protein response and suggest that blockade of PPAR-γ (Ser-273) phosphorylation may prevent type 1 diabetes.Item Re-exposure to beta cell autoantigens in pancreatic allograft recipients with pre-existing beta cell autoantibodies(Wiley, 2015-11) Mujtaba, Muhammad Ahmad; Fridell, Jonathan; Book, Benita; Faiz, Sara; Sharfuddin, Asif; Wiebke, Eric; Rigby, Mark; Taber, Tim; Department of Medicine, IU School of MedicineRe-exposure to beta cell autoantigens and its relevance in the presence of donor-specific antibodies (DSA) in pancreatic allograft recipients is not well known. Thirty-three patients requiring a pancreas transplant were enrolled in an IRB approved study. They underwent prospective monitoring for DSA and beta cell autoantibody (BCAA) levels to GAD65, insulinoma-associated antigen 2 (IA-2), insulin (micro-IAA [mIAA]), and islet-specific zinc transporter isoform-8 (ZnT8). Twenty-five (75.7%) had pre-transplant BCAA. Twenty had a single antibody (mIAA n = 15, GAD65 n = 5); five had two or more BCAA (GAD65 + mIAA n = 2, GAD65 + mIAA+IA-2 n = 2, GA65 + mIAA+IA-2 + ZnT8 = 1). No changes in GAD65 (p > 0.29), IA-2 (>0.16), and ZnT8 (p > 0.07) were observed between pre-transplant and post-transplant at 6 or 12 months. A decrease in mIAA from pre- to post-6 months (p < 0.0001), 12 months (p < 0.0001), and from post-6 to post-12 months (p = 0.0002) was seen. No new BCAA was observed at one yr. Seven (21.0%) developed de novo DSA. The incidence of DSA was 24% in patients with BCAA vs. 25% in patients without BCAA (p = 0.69). Pancreatic allograft function of patients with vs. without BCAA, and with and without BCAA + DSA was comparable until last follow-up (three yr). Re-exposure to beta cell autoantigens by pancreas transplant may not lead to increased levels or development of new BCAA or pancreatic allograft dysfunction.Item STAT3 activation impairs the stability of Th9 cells(American Association of Immunologists, 2017-03-15) Ulrich, Benjamin J.; Verdan, Felipe Fortino; McKenzie, Andrew N.J.; Kaplan, Mark H.; Olson, Matthew R.; Microbiology and Immunology, School of MedicineTh9 cells regulate multiple immune responses including immunity to pathogens and tumors, allergic inflammation, and autoimmunity. Despite ongoing research into Th9 development and function, little is known about the stability of the Th9 phenotype. In this report we demonstrate that IL-9 production is progressively lost in Th9 cultures over several rounds of differentiation. The loss of IL-9 is not due to an outgrowth of cells that do not secrete IL-9, as purified IL-9 secretors demonstrate the same loss of IL-9 in subsequent rounds of differentiation. The loss of IL-9 production correlates with increases in phospho-STAT3 levels within the cell, and the production of IL-10. STAT3-deficient Th9 cells have increased IL-9 production that is maintained for longer in culture than IL-9 in control cultures. IL-10 is responsible for STAT3 activation during the first round of differentiation, and contributes to instability in subsequent rounds of culture. Together, our results indicate that environmental cues dictate the instability of the Th9 phenotype, and suggest approaches to enhance Th9 activity in beneficial immune responses.