ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "asymmetric random matrix"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    The reciprocal Mahler ensembles of random polynomials
    (World Scientific, 2018) Sinclair, Christopher D.; Yattselev, Maxim L.; Mathematical Sciences, School of Science
    We consider the roots of uniformly chosen complex and real reciprocal polynomials of degree N whose Mahler measure is bounded by a constant. After a change of variables, this reduces to a generalization of Ginibre’s complex and real ensembles of random matrices where the weight function (on the eigenvalues of the matrices) is replaced by the exponentiated equilibrium potential of the interval [−2,2] on the real axis in the complex plane. In the complex (real) case, the random roots form a determinantal (Pfaffian) point process, and in both cases, the empirical measure on roots converges weakly to the arcsine distribution supported on [−2,2]. Outside this region, the kernels converge without scaling, implying among other things that there is a positive expected number of outliers away from [−2,2]. These kernels as well as the scaling limits for the kernels in the bulk (−2,2) and at the endpoints {−2,2} are presented. These kernels appear to be new, and we compare their behavior with related kernels which arise from the (non-reciprocal) Mahler measure ensemble of random polynomials as well as the classical Sine and Bessel kernels.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University