- Browse by Subject
Browsing by Subject "arterial stenosis"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Mock Circulation Loop to Characterize In Vitro Hemodynamics in Human Systemic Arteries with Stenosis(MDPI, 2023) Hong, Weichen; Yu, Huidan; Chen, Jun; Talamantes, John; Rollins, Dave M.; Fang, Xin; Long, Jianyun; Xu, Chenke; Sawchuck, Alan P.; Surgery, School of MedicineVascular disease is the leading cause of morbidity and mortality and a major cause of disability for Americans, and arterial stenosis is its most common form in systemic arteries. Hemodynamic characterization in a stenosed arterial system plays a crucial role in the diagnosis of its lesion severity and the decision-making process for revascularization, but it is not readily available in the current clinical measurements. The newly emerged image-based computational hemodynamics (ICHD) technique provides great potential to characterize the hemodynamics with fine temporospatial resolutions in realistic human vessels, but medical data is rather limited for validation requirements. We present an image-based experimental hemodynamics (IEHD) technique through a mock circulation loop (MCL) to bridge this critical gap. The MCL mimics blood circulation in human stenosed systemic arterial systems that can be either 3D-printed silicone, artificial, or cadaver arteries and thus enables in vitro measurement of hemodynamics. In this work, we focus on the development and validation of the MCL for the in vitro measurement of blood pressure in stenosed silicone arteries anatomically extracted from medical imaging data. Five renal and six iliac patient cases are studied. The pressure data from IEHD were compared with those from ICHD and medical measurement. The good agreements demonstrate the reliability of IEHD. We also conducted two parametric studies to demonstrate the medical applicability of IEHD. One was the cardiovascular response to MCL parameters. We found that blood pressure has a linear correlation with stroke volume and heart rate. Another was the effect of arterial stenosis, characterized by the volumetric reduction (VR) of the arterial lumen, on the trans-stenotic pressure gradient (TSPG). We parametrically varied the stenosis degree and measured the corresponding TSPG. The TSPG-VR curve provides a critical VR that can be used to assess the true hemodynamic severity of the stenosis. Meanwhile, the TSPG at VR = 0 can predict the potential pressure improvement after revascularization. Unlike the majority of existing MCLs that are mainly used to test medical devices involving heart function, this MCL is unique in its specific focus on pressure measurement in stenosed human systemic arteries. Meanwhile, rigorous hemodynamic characterization through concurrent IEHD and ICHD will significantly enhance our current understanding of the pathophysiology of stenosis and contribute to advancements in the medical treatment of arterial stenosis.Item Image Based Computational Hemodynamics for Non-Invasive and Patient-Specific Assessment of Arterial Stenosis(2019-08) Khan, Md Monsurul Islam; Yu, Huidan; Wagner, Diane; Zhu, LikunWhile computed tomographic angiography (CTA) has emerged as a powerful noninvasive option that allows for direct visualization of arterial stenosis(AS), it cant assess the hemodynamic abnormality caused by an AS. Alternatively, trans-stenotic pressure gradient (TSPG) and fractional flow reserve (FFR) are well-validated hemodynamic indices to assess the ischemic severity of an AS. However, they have significant restriction in practice due to invasiveness and high cost. To fill the gap, a new computational modality, called InVascular has been developed for non-invasive quantification TSPG and/or FFR based on patient's CTA, aiming to quantify the hemodynamic abnormality of the stenosis and help to assess the therapeutic/surgical benefits of treatment for the patient. Such a new capability gives rise to a potential of computation aided diagnostics and therapeutics in a patient-specific environment for ASs, which is expected to contribute to precision planning for cardiovascular disease treatment. InVascular integrates a computational modeling of diseases arteries based on CTA and Doppler ultrasonography data, with cutting-edge Graphic Processing Unit (GPU) parallel-computing technology. Revolutionary fast computing speed enables noninvasive quantification of TSPG and/or FFR for an AS within a clinic permissible time frame. In this work, we focus on the implementation of inlet and outlet boundary condition (BC) based on physiological image date and and 3-element Windkessel model as well as lumped parameter network in volumetric lattice Boltzmann method. The application study in real human coronary and renal arterial system demonstrates the reliability of the in vivo pressure quantification through the comparisons of pressure waves between noninvasive computational and invasive measurement. In addition, parametrization of worsening renal arterial stenosis (RAS) and coronary arterial stenosis (CAS) characterized by volumetric lumen reduction (S) enables establishing the correlation between TSPG/FFR and S, from which the ischemic severity of the AS (mild, moderate, or severe) can be identified. In this study, we quantify TSPG and/or FFR for five patient cases with visualized stenosis in coronary and renal arteries and compare the non-invasive computational results with invasive measurement through catheterization. The ischemic severity of each AS is predicted. The results of this study demonstrate the reliability and clinical applicability of InVascular.