- Browse by Subject
Browsing by Subject "anti-remodeling"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Adverse mandibular bone effects associated with kidney disease are only partially corrected with bisphosphonate and/or calcium treatment(Published article can be found at: http://www.karger.com/Article/FullText/356335 doi: 10.1159/000356335, 2013-10) Allen, Matthew R.; Chen, Neal X.; Gattone II, Vincent H.; Moe, Sharon M.Background/Aims: Patients with chronic kidney disease (CKD) have high prevalence of periodontal disease that may predispose to tooth loss and inflammation. The goal of this study was to test the hypotheses that a genetic rat model of progressive CKD would exhibit altered oral bone properties and that treatment with either bisphosphonates or calcium could attenuate these adverse changes. Methods: At 25 weeks of age, rats were treated with zoledronate, calcium gluconate, or their combination for 5 or 10 weeks. Mandible bone properties were assessed using micro-computed tomography to determine bone volume (BV/TV) and cementenamel junction to alveolar crest distance (CEJ-AC). Results: Untreated CKD animals had significantly lower BV/TV at both 30 (-5%) and 35 (-14%) weeks of age and higher CEJ-AC (+27 and 29%) compared to normal animals. CKD animals had significantly higher PTH compared to normal animals yet similar levels of C-reactive protein. Zoledronate-treatment normalized BV/TV over the first 5 weeks but this benefit was lost by 10 weeks. Calcium treatment, alone or in combination with zoledronate, was effective in normalizing BV/TV at both time points. Neither zoledronate nor calcium was able to correct the higher CEJ-AC caused by CKD. Calcium, but not zoledronate, significantly reduced serum parathyroid hormone (PTH) while neither treatment affected C-reactive protein. Conclusions: 1) this progressive animal model of chronic kidney disease shows a clear mandibular skeletal phenotype consistent with periodontitis, 2) the periodontitis is not associated with systemic inflammation as measured by C-reactive protein, and 3) reducing PTH has positive effects on the mandible phenotype.Item Alendronate treatment results in similar levels of trabecular bone remodeling in the femoral neck and vertebra(2009-04) Diab, Tamim; Allen, Matthew R.; Burr, David B.Introduction Bone turnover suppression in sites that already have a low surface-based remodeling rate may lead to oversuppression that could have negative effects on the biomechanical properties of bone. The goal was to determine how alendronate suppresses bone turnover at sites with different surface-based remodeling rates. Methods Dynamic histomorphometric parameters were assessed in trabecular bone of the femoral neck and lumbar vertebrae obtained from skeletally mature beagles treated with saline (1 ml/kg/day) or alendronate (ALN 0.2 or 1.0 mg/kg/day). The ALN0.2 and ALN1.0 doses approximate, on a milligram per kilogram basis, the clinical doses used for the treatment of postmenopausal osteoporosis and Paget’s disease, respectively. Results Alendronate treatment resulted in similar absolute levels of bone turnover in the femoral neck and vertebrae, although the femoral neck had 33% lower pre-treatment surface-based remodeling rate than the vertebra (p < 0.05). Additionally, the high dose of alendronate (ALN 1.0) suppressed bone turnover to similar absolute levels as the low dose of alendronate (ALN 0.2) in both sites. Conclusions Alendronate treatment may result in a lower limit of trabecular bone turnover suppression, suggesting that sites of low pre-treatment remodeling rate are not more susceptible to oversuppression than those of high pre-treatment remodeling rate.Item Bisphosphonates alter trabecular bone collagen cross-linking and isomerization in beagle dog vertebra(2008-03) Allen, Matthew R.; Gineyts, Evelyne; Leeming, Diana J.; Burr, David B.; Delmas, Pierre D.Changes in organic matrix may contribute to the anti-fracture efficacy of anti-remodeling agents. Following one year of treatment in beagle dogs, bisphosphonates alter the organic matrix of vertebral trabecular bone, while raloxifene had no effect. These results show that pharmacological suppression of turnover alters the organic matrix component of bone. INTRODUCTION: The collagen matrix contributes significantly to a bone's fracture resistance yet the effects of anti-remodeling agents on collagen properties are unclear. The goal of this study was to assess changes in collagen cross-linking and isomerization following anti-remodeling treatment. METHODS: Skeletally mature female beagles were treated for one year with oral doses of vehicle (VEH), risedronate (RIS; 3 doses), alendronate (ALN; 3 doses), or raloxifene (RAL; 2 doses). The middle dose of RIS and ALN and the lower dose of RAL approximate doses used for treatment of post menopausal osteoporosis. Vertebral trabecular bone matrix was assessed for collagen isomerization (ratio of alpha/beta C-telopeptide [CTX]), enzymatic (pyridinoline [PYD] and deoxypyridinoline [DPD]), and non-enzymatic (pentosidine [PEN]) cross-links. RESULTS: All doses of both RIS and ALN increased PEN (+34-58%) and the ratio of PYD/DPD (+14-26%), and decreased the ratio of alpha/beta CTX (-29-56%) compared to VEH. RAL did not alter any collagen parameters. Bone turnover rate was significantly correlated to PEN (R = -0.664), alpha/beta CTX (R = 0.586), and PYD/DPD (R = -0.470). CONCLUSIONS: Bisphosphonate treatment significantly alters properties of bone collagen suggesting a contribution of the organic matrix to the anti-fracture efficacy of this drug class.