ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "anonymization"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Sharing Social Networks Using a Novel Differentially Private Graph Model
    (IEEE, 2019-01) Gao, Tianchong; Li, Feng; Computer Information and Graphics Technology, School of Engineering and Technology
    Online social networks (OSNs) often contain sensitive information about individuals. Therefore, anonymizing social network data before releasing it becomes an important issue. Recent research introduces several graph abstraction models to extract graph features and add sufficient noise to achieve differential privacy.In this paper, we design and analyze a comprehensive differentially private graph model that combines the dK-1, dK-2, and dK-3 series together. The dK-1 series stores the degree frequency, the dK-2 series adds the joint degree frequency, and the dK-3 series contains the linking information between edges. In our scheme, low dimensional data makes the regeneration process more executable and effective, while high dimensional data preserves additional utility of the graph. As the higher dimensional model is more sensitive to the noise, we carefully design the executing sequence. The final released graph increases the graph utility under differential privacy.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University