ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "anomaly detection"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Coupled IGMM-GANs for improved generative adversarial anomaly detection
    (IEEE, 2018-12) Gray, Kathryn; Smolyak, Daniel; Badirli, Sarkhan; Mohler, George; Computer and Information Science, School of Science
    Detecting anomalies and outliers in data has a number of applications including hazard sensing, fraud detection, and systems management. While generative adversarial networks seem like a natural fit for addressing these challenges, we find that existing GAN based anomaly detection algorithms perform poorly due to their inability to handle multimodal patterns. For this purpose we introduce an infinite Gaussian mixture model coupled with (bi-directional) generative adversarial networks, IGMM-GAN, that facilitates multimodal anomaly detection. We illustrate our methodology and its improvement over existing GAN anomaly detection on the MNIST dataset.
  • Loading...
    Thumbnail Image
    Item
    Crime Detection from Pre-crime Video Analysis
    (2024-05) Kilic, Sedat; Tuceryan, Mihran; Zheng, Jiang Yu; Tsechpenakis, Gavriil; Durresi, Arjan
    This research investigates the detection of pre-crime events, specifically targeting behaviors indicative of shoplifting, through the advanced analysis of CCTV video data. The study introduces an innovative approach that leverages augmented human pose and emotion information within individual frames, combined with the extraction of activity information across subsequent frames, to enhance the identification of potential shoplifting actions before they occur. Utilizing a diverse set of models including 3D Convolutional Neural Networks (CNNs), Graph Neural Networks (GNNs), Recurrent Neural Networks (RNNs), and a specially developed transformer architecture, the research systematically explores the impact of integrating additional contextual information into video analysis. By augmenting frame-level video data with detailed pose and emotion insights, and focusing on the temporal dynamics between frames, our methodology aims to capture the nuanced behavioral patterns that precede shoplifting events. The comprehensive experimental evaluation of our models across different configurations reveals a significant improvement in the accuracy of pre-crime detection. The findings underscore the crucial role of combining visual features with augmented data and the importance of analyzing activity patterns over time for a deeper understanding of pre-shoplifting behaviors. The study’s contributions are multifaceted, including a detailed examination of pre-crime frames, strategic augmentation of video data with added contextual information, the creation of a novel transformer architecture customized for pre-crime analysis, and an extensive evaluation of various computational models to improve predictive accuracy.
  • Loading...
    Thumbnail Image
    Item
    CVAD - An unsupervised image anomaly detector
    (Elsevier, 2022-02) Guo, Xiaoyuan; Gichoya, Judy Wawira; Purkayastha, Saptarshi; Banerjee, Imon; BioHealth Informatics, School of Informatics and Computing
    Detecting out-of-distribution samples for image applications plays an important role in safeguarding the reliability of machine learning model deployment. In this article, we developed a software tool to support our OOD detector CVAD - a self-supervised Cascade Variational autoencoder-based Anomaly Detector , which can be easily applied to various image applications without any assumptions. The corresponding open-source software is published for better public research and tool usage.
  • Loading...
    Thumbnail Image
    Item
    Margin-Aware Intra-Class Novelty Identification for Medical Images
    (SPIE, 2022-02) Guo, Xiaoyuan; Gichoya, Judy Wawira; Purkayastha, Saptarshi; Banerjee, Imon; BioHealth Informatics, School of Informatics and Computing
    Purpose: Existing anomaly detection methods focus on detecting interclass variations while medical image novelty identification is more challenging in the presence of intraclass variations. For example, a model trained with normal chest x-ray and common lung abnormalities is expected to discover and flag idiopathic pulmonary fibrosis, which is a rare lung disease and unseen during training. The nuances of intraclass variations and lack of relevant training data in medical image analysis pose great challenges for existing anomaly detection methods. Approach: We address the above challenges by proposing a hybrid model—transformation-based embedding learning for novelty detection (TEND), which combines the merits of classifier-based approach and AutoEncoder (AE)-based approach. Training TEND consists of two stages. In the first stage, we learn in-distribution embeddings with an AE via the unsupervised reconstruction. In the second stage, we learn a discriminative classifier to distinguish in-distribution data and the transformed counterparts. Additionally, we propose a margin-aware objective to pull in-distribution data in a hypersphere while pushing away the transformed data. Eventually, the weighted sum of class probability and the distance to margin constitutes the anomaly score. Results: Extensive experiments are performed on three public medical image datasets with the one-vs-rest setup (namely one class as in-distribution data and the left as intraclass out-of-distribution data) and the rest-vs-one setup. Additional experiments on generated intraclass out-of-distribution data with unused transformations are implemented on the datasets. The quantitative results show competitive performance as compared to the state-of-the-art approaches. Provided qualitative examples further demonstrate the effectiveness of TEND. Conclusion: Our anomaly detection model TEND can effectively identify the challenging intraclass out-of-distribution medical images in an unsupervised fashion. It can be applied to discover unseen medical image classes and serve as the abnormal data screening for downstream medical tasks. The corresponding code is available at https://github.com/XiaoyuanGuo/TEND_MedicalNoveltyDetection.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University