- Browse by Subject
Browsing by Subject "angiogenesis"
Now showing 1 - 10 of 27
Results Per Page
Sort Options
Item Adenoviral Vectors Expressing Human Endostatin–Angiostatin and Soluble Tie2: Enhanced Suppression of Tumor Growth and Antiangiogenic Effects in a Prostate Tumor Model(Elsevier, 2005-12-01) Raikwar, Sudhanshu P.; Temm, Constance J.; Raikwar, Nandita S.; Kao, Chinghai; Molitoris, Bruce A.; Gardner, Thomas A.; Urology, School of MedicineAngiogenesis is essential for prostate cancer development and metastasis. Antiangiogenic therapy targeting tumor neovasculature, therefore, represents a promising approach for prostate cancer treatment. We hypothesized that adenoviral-mediated delivery of a combination of antiangiogenic factors might have an enhanced antitumor response. We developed the adenoviral vectors Ad-hEndo-angio, expressing a unique, chimeric human endostatin–angiostatin fusion protein, and Ad-sTie2, expressing a soluble form of endothelium-specific receptor tyrosine kinase Tie2. Matrigel angiogenesis assays using Ad-hEndo-angio revealed significant inhibition of tubular network formation and endothelial sprouting compared to Ad-sTie2. In vivo studies in a bilateral PC-3 tumor xenograft model following either intratumoral or systemic administration of Ad-hEndo-angio led to enhanced tumor growth suppression compared to Ad-sTie2. A novel finding is that an intratumoral, combination therapy employing one-half the dose of Ad-hEndo-angio as well as Ad-sTie2 led to a complete regression of the injected, as well as the contralateral uninjected, tumor and prolonged the tumor-free survival in 80% of the animals. In addition, a novel, real-time, intravital imaging modality was used to monitor antiangiogenic responses following adenoviral-mediated gene transfer. These results suggest that a combinatorial antiangiogenic gene therapy approach involving Ad-hEndo-angio and Ad-sTie2 could become a novel form of treatment for localized human prostate cancer.Item Altered angiogenesis as a common mechanism underlying preterm birth, small for gestational age, and stillbirth in women living with HIV(Elsevier, 2017-12) Conroy, Andrea L.; McDonald, Chloe R.; Gamble, Joel L.; Olwoch, Peter; Natureeba, Paul; Cohan, Deborah; Kamya, Moses R.; Havlir, Diane V.; Dorsey, Grant; Kain, Kevin C.; Pediatrics, School of MedicineBackground Angiogenic processes in the placenta are critical regulators of fetal growth and impact birth outcomes, but there are limited data documenting these processes in HIV-infected women or women from low-resource settings. Objective We sought to determine whether angiogenic factors are associated with adverse birth outcomes in HIV-infected pregnant women started on antiretroviral therapy. Study Design This is a secondary analysis of samples collected as part of a clinical trial randomizing pregnant women and adolescents infected with HIV to lopinavir/ritonavir-based (n = 166) or efavirenz-based (n = 160) antiretroviral therapy in Tororo, Uganda. Pregnant women living with HIV were enrolled between 12-28 weeks of gestation. Plasma samples were evaluated for angiogenic biomarkers (angiopoietin-1, angiopoietin-2, vascular endothelial growth factor, soluble fms-like tyrosine kinase-1, placental growth factor, and soluble endoglin) by enzyme-linked immunosorbent assay between: 16-<20, 20-<24, 24-<28, 28-<32, 32-<36, 36-<37 weeks of gestation. The primary outcome was preterm birth. Results In all, 1115 plasma samples from 326 pregnant women and adolescents were evaluated. There were no differences in angiogenic factors according to antiretroviral therapy group (P > .05 for all). The incidence of adverse birth outcomes was 16.9% for spontaneous preterm births, 25.6% for small-for-gestational-age births, and 2.8% for stillbirth. We used linear mixed effect modelling to evaluate longitudinal changes in angiogenic factor concentrations between birth outcome groups adjusting for gestational age at venipuncture, maternal age, body mass index, gravidity, and the interaction between treatment arm and gestational age. Two angiogenic factors–soluble endoglin and placental growth factor–were associated with adverse birth outcomes. Significantly higher concentrations of soluble endoglin throughout gestation were found in study participants destined to deliver preterm [likelihood ratio test, χ2(1) = 12.28, P < .0005] and in those destined to have stillbirths [χ2(1) = 5.67, P < .02]. By contrast, significantly lower concentrations of placental growth factor throughout gestation were found in those destined to have small-for-gestational-age births [χ2(1) = 7.89, P < .005] and in those destined to have stillbirths [χ2(1) = 21.59, P < .0001]. Conclusion An antiangiogenic state in the second or third trimester is associated with adverse birth outcomes, including stillbirth in women and adolescents living with HIV and receiving antiretroviral therapy.Item Angiogenic gene signature in human pancreatic cancer correlates with TGF-beta and inflammatory transcriptomes(Impact Journals, LLC, 2016-01-05) Craven, Kelly E.; Gore, Jesse; Wilson, Julie L.; Korc, Murray; Department of Medicine, IU School of MedicinePancreatic ductal adenocarcinomas (PDACs) are hypovascular, but overexpress pro-angiogenic factors and exhibit regions of microvasculature. Using RNA-seq data from The Cancer Genome Atlas (TCGA), we previously reported that ~12% of PDACs have an angiogenesis gene signature with increased expression of multiple pro-angiogenic genes. By analyzing the recently expanded TCGA dataset, we now report that this signature is present in ~35% of PDACs but that it is mostly distinct from an angiogenesis signature present in pancreatic neuroendocrine tumors (PNETs). These PDACs exhibit a transcriptome that reflects active TGF-β signaling, and up-regulation of several pro-inflammatory genes, and many members of JAK signaling pathways. Moreover, expression of SMAD4 and HDAC9 correlates with endothelial cell abundance in PDAC tissues. Concomitantly targeting the TGF-β type I receptor (TβRI) kinase with SB505124 and JAK1-2 with ruxolitinib suppresses JAK1 phosphorylation and blocks proliferative cross-talk between human pancreatic cancer cells (PCCs) and human endothelial cells (ECs), and these anti-proliferative effects were mimicked by JAK1 silencing in ECs. By contrast, either inhibitor alone does not suppress their enhanced proliferation in 3D co-cultures. These findings suggest that targeting both TGF-β and JAK1 signaling could be explored therapeutically in the 35% of PDAC patients whose cancers exhibit an angiogenesis gene signature.Item The Apelin–Apelin Receptor Axis Triggers Cholangiocyte Proliferation and Liver Fibrosis During Mouse Models of Cholestasis(Wiley, 2021-06) Chen, Lixian; Zhou, Tianhao; White, Tori; O'Brien, April; Chakraborty, Sanjukta; Liangpunsakul, Suthat; Yang, Zhihong; Kennedy, Lindsey; Saxena, Romil; Wu, Chaodong; Meng, Fanyin; Huang, Qiaobing; Francis, Heather; Alpini, Gianfranco; Glaser, Shannon; Medicine, School of MedicineBackground and Aims Apelin (APLN) is the endogenous ligand of its G protein–coupled receptor, apelin receptor (APJ). APLN serum levels are increased in human liver diseases. We evaluated whether the APLN–APJ axis regulates ductular reaction and liver fibrosis during cholestasis. Approach and Results We measured the expression of APLN and APJ and serum APLN levels in human primary sclerosing cholangitis (PSC) samples. Following bile duct ligation (BDL) or sham surgery, male wild-type (WT) mice were treated with ML221 (APJ antagonist) or saline for 1 week. WT and APLN−/− mice underwent BDL or sham surgery for 1 week. Multidrug resistance gene 2 knockout (Mdr2−/−) mice were treated with ML221 for 1 week. APLN levels were measured in serum and cholangiocyte supernatants, and cholangiocyte proliferation/senescence and liver inflammation, fibrosis, and angiogenesis were measured in liver tissues. The regulatory mechanisms of APLN–APJ in (1) biliary damage and liver fibrosis were examined in human intrahepatic biliary epithelial cells (HIBEpiCs) treated with APLN and (2) hepatic stellate cell (HSC) activation in APLN-treated human HSC lines (HHSteCs). APLN serum levels and biliary expression of APLN and APJ increased in PSC samples. APLN levels were higher in serum and cholangiocyte supernatants from BDL and Mdr2−/− mice. ML221 treatment or APLN−/− reduced BDL-induced and Mdr2−/−-induced cholangiocyte proliferation/senescence, liver inflammation, fibrosis, and angiogenesis. In vitro, APLN induced HIBEpiC proliferation, increased nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) expression, reactive oxygen species (ROS) generation, and extracellular signal–regulated kinase (ERK) phosphorylation. Pretreatment of HIBEpiCs with ML221, diphenyleneiodonium chloride (Nox4 inhibitor), N-acetyl-cysteine (NAC, ROS inhibitor), or PD98059 (ERK inhibitor) reduced APLN-induced cholangiocyte proliferation. Activation of HHSteCs was induced by APLN but reduced by NAC. Conclusions The APLN–APJ axis induces cholangiocyte proliferation through Nox4/ROS/ERK-dependent signaling and HSC activation through intracellular ROS. Modulation of the APLN–APJ axis may be important for managing cholangiopathies.Item Blockade of EMAP II protects cardiac function after chronic myocardial infarction by inducing angiogenesis(Elsevier, 2015-02) Yuan, Chujun; Yan, Lin; Solanki, Pallavi; Vatner, Stephen F.; Vatner, Dorothy E.; Schwarz, Margaret A.; Department of Pediatrics, IU School of MedicinePromoting angiogenesis is a key therapeutic target for protection from chronic ischemic cardiac injury. Endothelial-Monocyte-Activating-Polypeptide-II (EMAP II) protein, a tumor-derived cytokine having anti-angiogenic properties in cancer, is markedly elevated following myocardial ischemia. We examined whether neutralization of EMAP II induces angiogenesis and has beneficial effects on myocardial function and structure after chronic myocardial infarction (MI). EMAP II antibody (EMAP II AB), vehicle, or non-specific IgG (IgG) was injected ip at 30 min and 3, 6, and 9 days after permanent coronary artery occlusion in mice. EMAP II AB, compared with vehicle or non-specific antibody, significantly, p<0.05, improved the survival rate after MI, reduced scar size and attenuated the development of heart failure, i.e., left ventricular ejection fraction was significantly higher in EMAP II AB group, fibrosis was reduced by 24%, and importantly, more myocytes were alive in EMAP II AB group in the infarct area. In support of an angiogenic mechanism, capillary density (193/HPF vs. 172/HPF), doubling of the number of proliferating endothelial cells, and angiogenesis related biomarkers were upregulated in mice receiving EMAP II AB treatment as compared to IgG. Furthermore, EMAP II AB prevented EMAP II protein inhibition of in vitro tube formation in HUVECs. We conclude that blockade of EMAP II induces angiogenesis and improves cardiac function following chronic MI, resulting in reduced myocardial fibrosis and scar formation and increased capillary density and preserved viable myocytes in the infarct area.Item The Effects of High Fat Diet, Bone Healing, and BMP-2 Treatment on Endothelial Cell Growth and Function(Elsevier, 2021-05) Bhatti, Fazal Ur Rehman; Dadwal, Ushashi C.; Valuch, Conner R.; Tewari, Nikhil P.; Awosanya, Olatundun D.; Staut, Caio de Andrade; Sun, Seungyup; Mendenhall, Stephen K.; Perugini, Anthony J., III; Nagaraj, Rohit U.; Battini, Hanisha L.; Nazzal, Murad K.; Blosser, Rachel J.; Maupin, Kevin A.; Childress, Paul J.; Li, Jiliang; Kacena, Melissa A.; Orthopaedic Surgery, School of MedicineAngiogenesis is a vital process during the regeneration of bone tissue. The aim of this study was to investigate angiogenesis at the fracture site as well as at distal locations from obesity-induced type 2 diabetic mice that were treated with bone morphogenetic protein-2 (BMP-2, local administration at the time of surgery) to heal a femoral critical sized defect (CSD) or saline as a control. Mice were fed a high fat diet (HFD) to induce a type 2 diabetic-like phenotype while low fat diet (LFD) animals served as controls. Endothelial cells (ECs) were isolated from the lungs (LECs) and bone marrow (BMECs) 3 weeks post-surgery, and the fractured femurs were also examined. Our studies demonstrate that local administration of BMP-2 at the fracture site in a CSD model results in complete bone healing within 3 weeks for all HFD mice and 66.7% of LFD mice, whereas those treated with saline remain unhealed. At the fracture site, vessel parameters and adipocyte numbers were significantly increased in BMP-2 treated femurs, irrespective of diet. At distal sites, LEC and BMEC proliferation was not altered by diet or BMP-2 treatment. HFD increased the tube formation ability of both LECs and BMECs. Interestingly, BMP-2 treatment at the time of surgery reduced tube formation in LECs and humeri BMECs. However, migration of BMECs from HFD mice treated with BMP-2 was increased compared to BMECs from HFD mice treated with saline. BMP-2 treatment significantly increased the expression of CD31, FLT-1, and ANGPT2 in LECs and BMECs in LFD mice, but reduced the expression of these same genes in HFD mice. To date, this is the first study that depicts the systemic influence of fracture surgery and local BMP-2 treatment on the proliferation and angiogenic potential of ECs derived from the bone marrow and lungs.Item Endothelial colony-forming cells and pro-angiogenic cells: clarifying definitions and their potential role in mitigating acute kidney injury(Wiley, 2017) Basile, David P.; Collett, Jason A.; Yoder, Mervin C.; Department of Cellular & Integrative Physiology, IU School of MedicineAcute kidney injury (AKI) represents a significant clinical concern that is associated with high mortality rates and also represents a significant risk factor for the development of chronic kidney disease (CKD). This article will consider alterations in renal endothelial function in the setting of AKI that may underlie impairment in renal perfusion and how inefficient vascular repair may manifest post-AKI and contribute to the potential transition to CKD. We provide updated terminology for cells previously classified as ‘endothelial progenitor’ that may mediate vascular repair such as pro-angiogenic cells and endothelial colony-forming cells. We consider how endothelial repair may be mediated by these different cell types following vascular injury, particularly in models of AKI. We further summarize the potential ability of these different cells to mitigate the severity of AKI, improve perfusion and maintain vascular structure in pre-clinical studies.Item Endothelial stem and progenitor cells (stem cells): (2017 Grover Conference Series)(SAGE, 2017-11-03) Yoder, Mervin C.; Pediatrics, School of MedicineThe capacity of existing blood vessels to give rise to new blood vessels via endothelial cell sprouting is called angiogenesis and is a well-studied biologic process. In contrast, little is known about the mechanisms for endothelial cell replacement or regeneration within established blood vessels. Since clear definitions exist for identifying cells with stem and progenitor cell properties in many tissues and organs of the body, several groups have begun to accumulate evidence that endothelial stem and progenitor cells exist within the endothelial intima of existing blood vessels. This paper will review stem and progenitor cell definitions and highlight several recent papers purporting to have identified resident vascular endothelial stem and progenitor cells.Item Epigenetic Activation of Pro-angiogenic Signaling Pathways in Human Endothelial Progenitors Increases Vasculogenesis(Cell Press, 2017-10-12) Fraineau, Sylvain; Palii, Carmen G.; McNeill, Brian; Ritso, Morten; Shelley, William C.; Prasain, Nutan; Chu, Alphonse; Vion, Elodie; Rieck, Kristy; Nilufar, Sharmin; Perkins, Theodore J.; Rudnicki, Michael A.; Allan, David S.; Yoder, Mervin C.; Suuronen, Erik J.; Brand, Marjorie; Pediatrics, School of MedicineHuman endothelial colony-forming cells (ECFCs) represent a promising source of adult stem cells for vascular repair, yet their regenerative capacity is limited. Here, we set out to understand the molecular mechanism restricting the repair function of ECFCs. We found that key pro-angiogenic pathways are repressed in ECFCs due to the presence of bivalent (H3K27me3/H3K4me3) epigenetic marks, which decreases the cells' regenerative potential. Importantly, ex vivo treatment with a combination of epigenetic drugs that resolves bivalent marks toward the transcriptionally active H3K4me3 state leads to the simultaneous activation of multiple pro-angiogenic signaling pathways (VEGFR, CXCR4, WNT, NOTCH, SHH). This in turn results in improved capacity of ECFCs to form capillary-like networks in vitro and in vivo. Furthermore, restoration of perfusion is accelerated upon transplantation of drug-treated ECFCs in a model of hindlimb ischemia. Thus, ex vivo treatment with epigenetic drugs increases the vascular repair properties of ECFCs through transient activation of pro-angiogenic signaling pathways., • Pro-angiogenic pathways are maintained in a poised state in ECFCs • Epigenetic drugs resolve bivalently marked genes toward an active state in ECFCs • Treatment with epigenetic drugs activates multiple pro-angiogenic pathways in ECFCs • Ex vivo treatment with epigenetic drugs increases ECFC-mediated vasculogenesis , Endothelial colony-forming cells (ECFCs) have the unique capability to form blood vessels in vivo. Here, Brand and colleagues show that the regenerative function of ECFCs is restricted by the presence of bivalent histone marks on pro-angiogenic genes. This poised status can be overcome through the combined action of epigenetic drugs that simultaneously activate multiple pro-angiogenic pathways to increase ECFC-mediated vasculogenesis.Item Ferrochelatase is a therapeutic target for ocular neovascularization(Wiley, 2017) Basavarajappa, Halesha D.; Sulaiman, Rania S.; Qi, Xiaoping; Shetty, Trupti; Babu, Sardar Sheik Pran; Sishtla, Kamakshi L.; Lee, Bit; Quigley, Judith; Alkhairy, Sameerah; Briggs, Christian M.; Gupta, Kamna; Tang, Buyun; Shadmand, Mehdi; Grant, Maria B.; Boulton, Michael E.; Seo, Seung-Yong; Corson, Timothy W.; Department of Ophthalmology, IU School of MedicineOcular neovascularization underlies major blinding eye diseases such as “wet” age-related macular degeneration (AMD). Despite the successes of treatments targeting the vascular endothelial growth factor (VEGF) pathway, resistant and refractory patient populations necessitate discovery of new therapeutic targets. Using a forward chemical genetic approach, we identified the heme synthesis enzyme ferrochelatase (FECH) as necessary for angiogenesis in vitro and in vivo. FECH is overexpressed in wet AMD eyes and murine choroidal neovascularization; siRNA knockdown of Fech or partial loss of enzymatic function in the Fechm1Pas mouse model reduces choroidal neovascularization. FECH depletion modulates endothelial nitric oxide synthase function and VEGF receptor 2 levels. FECH is inhibited by the oral antifungal drug griseofulvin, and this compound ameliorates choroidal neovascularization in mice when delivered intravitreally or orally. Thus, FECH inhibition could be used therapeutically to block ocular neovascularization.
- «
- 1 (current)
- 2
- 3
- »