- Browse by Subject
Browsing by Subject "amyloid beta"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item MicroRNA Regulation of Key Proteins Involved in Alzheimer's Disease Pathogenesis(2022-06) Wang, Ruizhi; Du, Yansheng; Lahiri, Debomoy K.; Kim, Jungsu; Reeves, Cristian A. Lasagna; Zhou, Feng C.Alzheimer’s disease (AD) is a neurodegenerative disease histopathologically characterized by the coexistence of amyloid plaques and neurofibrillary tangles, mainly consisting of amyloid β peptides hyperphosphorylated tau proteins, respectively. Multiple proteins and pathways are involved in the pathogenesis of AD, including Aβ precursor protein (APP), β-site APP-cleaving enzyme (BACE1), neprilysin, endothelin converting enzyme (ECE), repressor element-1 silencing transcription factor (REST), microtubule-associated protein tau, glycogen synthase kinase, and pro-inflammatory cytokines. However, how these proteins and pathways are dysregulated and converge in AD pathogenesis remains unclear. Genetic, epigenetic and environmental factors play important roles in disease progression. MicroRNAs (miRNAs), a group of small noncoding RNAs, are important epigenetic regulators that participate in AD development. We have identified three miRNAs capable of targeting several proteins in different AD-related pathways: miR-181-5p, miR-153-3p and miR-101-3p. We tested miR-181 activity with recombinant reporter gene- MME 3’-UTR constructs. All four miR-181-5p (miR-181a, miR-181b, miR-181c and miR-181d) sequences downregulated the reporter signal. Human differentiated neural cells were transfected with miR-181d-5p mimics. miR-181d-5p treatment significantly reduced MME mRNA levels, protein levels and enzyme activity. In addition, miR-181d-5p increased tau and phosphorylated tau levels proportionally. We further demonstrate that miR-153-3p reduced REST 3’-UTR activities, mRNA and protein levels in multiple human cell lines. Moreover, we show that miR-153-3p, by knocking down REST protein, induces apoptosis in HeLa cells but not differentiated neural cells. In addition, miR-153-3p regulates neuronal differentiation in neuronal stem cells, potentially via REST knockdown. We further found that miR-153 levels were correlated with a reduced likelihood of developing AD. Last, we demonstrated that miR-101-3p reduced ECE1 and GSK3β protein levels in multiple cell lines. miR-101-3p increased REST and pro-inflammatory cytokine secretion in microglia cells. In sum, we tested the hypothesis that miRNAs can serve as the master regulator of AD pathogenesis.