ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "aminosilane"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Surface Modification of a MXene by an Aminosilane Coupling Agent
    (Wiley, 2020-03) Riazi, Hossein; Anayee, Mark; Hantanasirisakul, Kanit; Shamsabadi, Ahmad Arabi; Anasori, Babak; Gogotsi, Yury; Soroush, Masoud; Mechanical and Energy Engineering, School of Engineering and Technology
    MXenes, two-dimensional (2D) transition metal carbides and/or nitrides, possess surface termination groups such as hydroxyl, oxygen, and fluorine, which are available for surface functionalization. Their surface chemistry is critical in many applications. This article reports amine functionalization of Ti3C2Tx MXene surface with [3-(2-aminoethylamino)-propyl]trimethoxysilane (AEAPTMS). Characterization techniques such as X-ray photoelectron spectroscopy verify the success of the surface functionalization and confirm that the silane coupling agent bonds to Ti3C2Tx surface both physically and chemically. The functionalization changes the MXene surface charge from −35 to +25 mV at neutral pH, which allows for in situ preparation of self-assembled films. Further, surface charge measurements of the functionalized MXene at different pH values show that the functionalized MXene has an isoelectric point at a pH around 10.7, and the highest reported positive surface charge of +62 mV at a pH of 2.58. Furthermore, the existence of a mixture of different orientations of AEAPTMS and the simultaneous presence of protonated and free amine groups on the surface of Ti3C2Tx are demonstrated. The availability of free amine groups on the surface potentially permits the fabrication of crosslinked electrically conductive MXene/epoxy composites, dye adsorbents, high-performance membranes, and drug carriers. Surface modifications of this type are applicable to many other MXenes.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University