- Browse by Subject
Browsing by Subject "allergic inflammation"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Serum MicroRNA-21 as a Biomarker for Allergic Inflammatory Disease in Children(Bentham, 2016) Sawant, Deepali V.; Yao, Weiguo; Wright, Zachary; Sawyers, Cindy; Tepper, Robert S.; Gupta, Sandeep K.; Kaplan, Mark H.; Dent, Alexander L.; Department of Microbiology & Immunology, IU School of MedicineMicroRNAs (miRs) have emerged as useful biomarkers for different disease states, including allergic inflammatory diseases such as asthma and eosinophilic esophagitis (EoE). Serum miRs are a possible non-invasive method for diagnosis of such diseases. We focused on microRNA-21 (miR-21) levels in serum, in order to assess the feasibility of using this gene as a non-invasive biomarker for these diseases in the clinic, as well as to better understand the expression pattern of miR-21 in allergic inflammation. We used quantitative PCR (QPCR) to assay miR-21 and other control miRs in esophageal biopsies from EoE patients and serum samples from EoE and asthma patients. Serum levels of miR-21 were significantly elevated in patients with asthma, whereas serum miR-21 levels were not associated with the presence of allergen-specific IgE (i.e. atopy). Esophageal biopsies showed a large elevation of miR-21 in EoE and an increase in miR-21 in EoE serum. Control U6 miR did not vary between asthma and control patients, however EoE serum had significantly decreased U6 microRNA compared to controls. The decreased U6 in EoE sera did not completely account for the relative increase in miR-21 in the sera of EoE patients. We report for the first time that miR-21 is elevated in the sera of both asthma and EoE patients. We find no relation between serum miR-21 levels and atopy. Our results thus suggest miR-21 is a novel biomarker for human allergic inflammatory diseases.Item The transcription factor Etv5 controls TH17 cell development and allergic airway inflammation(Elsevier, 2014-07) Pham, Duy; Sehra, Sarita; Sun, Xin; Kaplan, Mark H.; Department of Pediatrics, IU School of MedicineBackground The differentiation of TH17 cells, which promote pulmonary inflammation, requires the cooperation of a network of transcription factors. Objectives We sought to define the role of Etv5, an Ets-family transcription factor, in TH17 cell development and function. Methods TH17 development was examined in primary mouse T cells wherein Etv5 expression was altered by retroviral transduction, small interfering RNA targeting a specific gene, and mice with a conditional deletion of Etv5 in T cells. The direct function of Etv5 on the Il17 locus was tested with chromatin immunoprecipitation and reporter assays. The house dust mite–induced allergic inflammation model was used to test the requirement for Etv5-dependent TH17 functions in vivo. Results We identify Etv5 as a signal transducer and activator of transcription 3–induced positive regulator of TH17 development. Etv5 controls TH17 differentiation by directly promoting 0a and Il17f expression. Etv5 recruits histone-modifying enzymes to the Il17a–Il17f locus, resulting in increased active histone marks and decreased repressive histone marks. In a model of allergic airway inflammation, mice with Etv5-deficient T cells have reduced airway inflammation and IL-17A/F production in the lung and bronchoalveolar lavage fluid compared with wild-type mice, without changes in TH2 cytokine production. Conclusions These data define signal transducer and activator of transcription 3–dependent feed-forward control of TH17 cytokine production and a novel role for Etv5 in promoting T cell–dependent airway inflammation.