ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "algebraic function"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Periodic points of algebraic functions and Deuring’s class number formula
    (Springer, 2019) Morton, Patrick; Mathematical Sciences, School of Science
    The exact set of periodic points in Q of the algebraic function ˆ F(z) = (−1±p1 − z4)/z2 is shown to consist of the coordinates of certain solutions (x, y) = ( , ) of the Fermat equation x4+y4 = 1 in ring class fields f over imaginary quadratic fields K = Q(p−d) of odd conductor f, where −d = dKf2 1 (mod 8). This is shown to result from the fact that the 2-adic function F(z) = (−1 + p1 − z4)/z2 is a lift of the Frobenius automorphism on the coordinates for which | |2 < 1, for any d 7 (mod 8), when considered as elements of the maximal unramified extension K2 of the 2-adic field Q2. This gives an interpretation of the case p = 2 of a class number formula of Deuring. An algebraic method of computing these periodic points and the corresponding class equations H−d(x) is given that is applicable for small periods. The pre-periodic points of ˆ F(z) in Q are also determined.
  • Loading...
    Thumbnail Image
    Item
    Solutions of diophantine equations as periodic points of p-adic algebraic functions, II: The Rogers-Ramanujan continued fraction
    (2019) Morton, Patrick; Mathematical Sciences, School of Science
    In this part we show that the diophantine equation X5+Y5=ε5(1−X5Y5) , where ε=−1+5√2 , has solutions in specific abelian extensions of quadratic fields K=Q(−d−−−√) in which −d≡±1 (mod 5 ). The coordinates of these solutions are values of the Rogers-Ramanujan continued fraction r(τ) , and are shown to be periodic points of an algebraic function.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University