- Browse by Subject
Browsing by Subject "airway epithelia"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Bioinformatic Analysis of Differential Protein Expression in Calu-3 Cells Exposed to Carbon Nanotubes(MDPI, 2013-10-24) Li, Pin; Lai, Xianyin; Witzmann, Frank A.; Blazer-Yost, Bonnie L.; Biology, School of ScienceCarbon nanomaterials are widely produced and used in industry, medicine and scientific research. To examine the impact of exposure to nanoparticles on human health, the human airway epithelial cell line, Calu-3, was used to evaluate changes in the cellular proteome that could account for alterations in cellular function of airway epithelia after 24 hexposure to 10 μg/mL and 100 ng/mLof two common carbon nanoparticles, single- and multi-wall carbon nanotubes (SWCNT, MWCNT). After exposure to the nanoparticles, label-free quantitative mass spectrometry (LFQMS) was used to study the differential protein expression. Ingenuity Pathway Analysis (IPA) was used to conduct a bioinformaticanalysis of proteins identified in LFQMS. Interestingly, after exposure to ahigh concentration (10 μg/mL; 0.4 μg/cm2) of MWCNT or SWCNT, only 8 and 13 proteins, respectively, exhibited changes in abundance. In contrast, the abundance of hundreds of proteins was altered in response to a low concentration (100 ng/mL; 4 ng/cm2) of either CNT. Of the 281 and 282 proteins that were significantly altered in response to MWCNT or SWCNT respectively, 231 proteins were the same. Bioinformatic analyses found that the proteins in common to both nanotubes occurred within the cellular functions of cell death and survival, cell-to-cell signaling and interaction, cellular assembly and organization, cellular growth and proliferation, infectious disease, molecular transport and protein synthesis. The majority of the protein changes represent a decrease in amount suggesting a general stress response to protect cells. The STRING database was used to analyze the various functional protein networks. Interestingly, some proteins like cadherin 1 (CDH1), signal transducer and activator of transcription 1 (STAT1), junction plakoglobin (JUP), and apoptosis-associated speck-like protein containing a CARD (PYCARD), appear in several functional categories and tend to be in the center of the networks. This central positioning suggests they may play important roles in multiple cellular functions and activities that are altered in response to carbon nanotube exposure.Item Bioinformatic Analysis of Proteomic Changes That Occur in an Airway Epithelial Cell Line in Response to Exposure to Physiologically Relevant Concentrations of Carbon Nanotubes(Office of the Vice Chancellor for Research, 2013-04-05) Li, Pin; Lewis, Shanta; Witzmann, Frank; Blazer-Yost, Bonnie L.Carbon nanomaterials are widely produced and used in industry, medicine and scientific research. To examine the impact of acute exposure to nanoparticles on human health, the human airway epithelial cell line, Calu-3, was used to evaluate potential alterations in cellular function of airway epithelia after 24 hours exposure to different concentrations of two common carbon nanoparticles, single- and multi-wall carbon nanotubes (SWCNT, MWCNT). After exposure to the nanoparticles, label-free quantitative mass spectrometry (LFQMS) was used to study the differential protein expression in Calu-3 cells. Ingenuity Pathway Analysis (IPA) was used to conduct a bioinformatic analysis of proteins identified in LFQMS. Changes in protein abundance generated in response to 100 ng/ml exposure of both MWCNT and SWCNT suggest that cell functions of cell death and survival, cell-to-cell signaling and interaction, cellular assembly and organization, cellular growth and proliferation, infectious disease, molecular transport and protein synthesis are predicted to be effected. The majority of the protein changes represent a decrease in amount suggesting a shut down of metabolism to protect cells. The STRING database was used to analyze the protein networks in different functions. Interestingly some proteins like cadherin 1 (CDH1), signal transducer and activator of transcription 1 (STAT1), junction plakoglobin (JUP), apoptosis-associated speck-like protein containing a CARD (PYCARD), appear in several functions and tend to be in the center of the networks, which suggest they may play important roles in the cell function and activity.Item Epinephrine stimulation of anion secretion in the Calu-3 serous cell model(American Physiological Society (APS), 2014-05-15) Banga, Amiraj; Flaig, Stephanie; Lewis, Shanta; Winfree, Seth; Blazer-Yost, Bonnie L.; Department of Biology, School of ScienceCalu-3 is a well-differentiated human bronchial cell line with the characteristics of the serous cells of airway submucosal glands. The submucosal glands play a major role in mucociliary clearance because they secrete electrolytes that facilitate airway hydration. Given the significance of both long- and short-term β-adrenergic receptor agonists in the treatment of respiratory diseases, it is important to determine the role of these receptors and their ligands in normal physiological function. The present studies were designed to characterize the effect of epinephrine, the naturally occurring β-adrenergic receptor agonist, on electrolyte transport of the airway serous cells. Interestingly, epinephrine stimulated two anion secretory channels, the cystic fibrosis transmembrane conductance regulator and a Ca2+-activated Cl− channel, with the characteristics of transmembrane protein 16A, thereby potentially altering mucociliary clearance via multiple channels. Consistent with the dual channel activation, epinephrine treatment resulted in increases in both intracellular cAMP and Ca2+. Furthermore, the present results extend previous reports indicating that the two anion channels are functionally linked.