ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "adenosine"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    AMPD1 polymorphism and response to regadenoson
    (Future Medicine, 2015-11) Saab, Rayan; Zouk, Aline N.; Mastouri, Ronald; Skaar, Todd C.; Philips, Santosh; Kreutz, Rolf P.; Department of Medicine, IU School of Medicine
    AIMS: AMPD1 c.34C > T (rs17602729) polymorphism results in AMPD1 deficiency. We examined the association of AMPD1 deficiency and variability of hemodynamic response to regadenoson. SUBJECTS & METHODS: Genotyping for c.34C>T was performed in 267 patients undergoing regadenoson cardiac stress testing. RESULTS: Carriers of c.34C >T variant exhibited higher relative changes in systolic blood pressure (SBP) compared with wild-type subjects ([%] SBP change to peak: 12 ± 25 vs 5 ± 13%; p = 0.01) ([%] SBP change to nadir: -3 ± 15 vs -7 ± 11%; p = 0.04). Change in heart rate was similar between groups, but side effects were more common in carriers of the variant (+LR = 4.2; p = 0.04). CONCLUSION: AMPD1 deficiency may be involved in the modulation of regadenoson's systemic effects.
  • Loading...
    Thumbnail Image
    Item
    Common genetic polymorphisms of adenosine A2A receptor do not influence response to regadenoson
    (Future Science, 2017-04) Berlacher, Mark; Mastouri, Ronald; Philips, Santosh; Skaar, Todd C.; Kreutz, Rolf P.; Medicine, School of Medicine
    Aim: Hemodynamic response to regadenoson varies greatly, and underlying mechanisms for variability are poorly understood. We hypothesized that five common variants of adenosine A2A receptor (ADORA2A) are associated with altered response to regadenoson. Methods: Consecutive subjects (n = 357) undergoing resting regadenoson nuclear stress imaging were enrolled. Genotyping was performed using Taqman-based assays for rs5751862, rs2298383, rs3761422, rs2267076 and rs5751876. Results: There was no significant difference in heart rate or blood pressure between different genotypes following regadenoson administration. There was also no significant difference in myocardial ischemia detected by nuclear perfusion imaging as defined by summed difference score, or in self-reported side effects among the genotypes tested. Conclusion: The common A2A variants studied are not associated with variability in hemodynamic response to regadenoson or variability in detection of ischemia with nuclear perfusion stress imaging.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University