- Browse by Subject
Browsing by Subject "Yolk sac"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item The Earliest T-Precursors in the Mouse Embryo Are Susceptible to Leukemic Transformation(Frontiers Media, 2021-04-29) Ding, Jixin; Cardoso, Angelo A.; Yoshimoto, Momoko; Kobayashi, Michihiro; Medicine, School of MedicineAcute lymphoblastic leukemia (ALL) is the most common malignancy in pediatric patients. About 10–15% of pediatric ALL belong to T-cell ALL (T-ALL), which is characterized by aggressive expansion of immature T-lymphoblasts and is categorized as high-risk leukemia. Leukemia initiating cells represent a reservoir that is responsible for the initiation and propagation of leukemia. Its perinatal origin has been suggested in some childhood acute B-lymphoblastic and myeloblastic leukemias. Therefore, we hypothesized that child T-ALL initiating cells also exist during the perinatal period. In this study, T-ALL potential of the hematopoietic precursors was found in the para-aortic splanchnopleura (P-Sp) region, but not in the extraembryonic yolk sac (YS) of the mouse embryo at embryonic day 9.5. We overexpressed the Notch intracellular domain (NICD) in the P-Sp and YS cells and transplanted them into lethally irradiated mice. NICD-overexpressing P-Sp cells rapidly developed T-ALL while YS cells failed to display leukemia propagation despite successful NICD induction. These results suggest a possible role of fetal-derived T-cell precursors as leukemia-initiating cells.Item Long-Term Engraftment of ESC-Derived B-1 Progenitor Cells Supports HSC-Independent Lymphopoiesis(Elsevier, 2019-03-05) Lin, Yang; Kobayashi, Michihiro; Portilho, Nathalia Azevedo; Mishra, Akansha; Gao, Hongyu; Liu, Yunlong; Wenzel, Pamela; Davis, Brian; Yoder, Mervin C.; Yoshimoto, Momoko; Pediatrics, School of MedicineIt is generally considered that mouse embryonic stem cell (ESC) differentiation into blood cells in vitro recapitulates yolk sac (YS) hematopoiesis. As such, similar to YS-derived B-progenitors, we demonstrate here that ESC-derived B-progenitors differentiate into B-1 and marginal zone B cells, but not B-2 cells in immunodeficient mice after transplantation. ESC-derived B-1 cells were maintained in the recipients for more than 6 months, secreting natural IgM antibodies in vivo. Gene expression profiling displayed a close relationship between ESC- and YS-derived B-1 progenitors. Because there are no hematopoietic stem cells (HSCs) detectable in our ESC differentiation culture, successful long-term engraftment of ESC-derived functional B-1 cells supports the presence of HSC-independent B-1 cell development.Item Yolk sac erythromyeloid progenitors expressing gain of function PTPN11 have functional features of JMML but are not sufficient to cause disease in mice(Wiley, 2017-12) Tarnawsky, Stefan P.; Yoshimoto, Momoko; Deng, Lisa; Chan, Rebecca J.; Yoder, Mervin C.; Biochemistry and Molecular Biology, School of MedicineBACKGROUND: Accumulating evidence suggests the origin of juvenile myelomonocytic leukemia (JMML) is closely associated with fetal development. Nevertheless, the contribution of embryonic progenitors to JMML pathogenesis remains unexplored. We hypothesized that expression of JMML-initiating PTPN11 mutations in HSC-independent yolk sac erythromyeloid progenitors (YS EMPs) would result in a mouse model of pediatric myeloproliferative neoplasm (MPN). RESULTS: E9.5 YS EMPs from VavCre+;PTPN11D61Y embryos demonstrated growth hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF) and hyperactive RAS-ERK signaling. Mutant EMPs engrafted the spleens of neonatal recipients, but did not cause disease. To assess MPN development during unperturbed hematopoiesis we generated CSF1R-MCM+;PTPN11E76K ;ROSAYFP mice in which oncogene expression was restricted to EMPs. Yellow fluorescent protein-positive progeny of mutant EMPs persisted in tissues one year after birth and demonstrated hyperactive RAS-ERK signaling. Nevertheless, these mice had normal survival and did not demonstrate features of MPN. CONCLUSIONS: YS EMPs expressing mutant PTPN11 demonstrate functional and molecular features of JMML but do not cause disease following transplantation nor following unperturbed development. Developmental Dynamics 246:1001-1014, 2017. © 2017 Wiley Periodicals, Inc.