- Browse by Subject
Browsing by Subject "YAP"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Bidirectional regulation of YAP and ALDH1A1(2015-08-10) Martien, Matthew F.; Wells, Clark D.; Hurley, Thomas D.; Quilliam, Lawrence A.Breast cancer is the second leading cause of cancer death for women in the United States. Approximately, 1 in 5 women will recur with cancer within 10 years of completing treatment and recent publications have suggested that breast cancer stem cells confer resistance to therapy. These reports highlight aldehyde dehydrogenase 1A1 (ALDH1A1) and Yes-associated protein (YAP) as a biomarker and key mediator of the stem cell phenotype respectively. To further understand how YAP and ALDH1A1 facilitate chemoresistance, this study investigated how ALDH1A1 specific inhibition affected YAP activity and growth of basal-like breast cancer cells, which are enriched in cancer stem cells. Intriguingly, attenuation of growth by ALDH1A1 inhibition was observed when cells were plated on a reconstituted basement membrane. Further, the inhibition of cell growth correlated with cytosolic retention of YAP and a reduction in YAP signaling. In a complementary analysis, the overexpression of YAP correlated with an increased level of ALDH1A1 transcript. Results from this study indicate a novel mechanism by which basal-like breast cancer cells utilize YAP to maintain the stem cell phenotype and also suggest ALDH1A1 as a potential therapeutic target for breast cancer therapy.Item FOXM1 is a downstream target of LPA and YAP oncogenic signaling pathways in high grade serous ovarian cancer(Oncotarget, 2015-09-29) Fan, Qipeng; Cai, Qingchun; Xu, Yan; Department of Obstetrics and Gynecology, IU School of MedicineLysophosphatidic acid (LPA), a prototypical ligand for G protein coupled receptors, and Forkhead box protein M1 (FOXM1), a transcription factor that regulates expression of a wide array of genes involved in cancer initiation and progression, are two important oncogenic signaling molecules in human epithelial ovarian cancers (EOC). We conducted in vitro mechanistic studies using pharmacological inhibitors, genetic forms of the signaling molecules, and RNAi-mediated gene knock-down to uncover the molecular mechanisms of how these two molecules interact in EOC cells. Additionally, in vivo mouse studies were performed to confirm the functional involvement of FOXM1 in EOC tumor formation and progression. We show for the first time that LPA up-regulates expression of active FOXM1 splice variants in a time- and dose-dependent manner in the human EOC cell lines OVCA433, CAOV3, and OVCAR5. Gi-PI3K-AKT and G12/13-Rho-YAP signaling pathways were both involved in the LPA receptor (LPA1-3) mediated up-regulation of FOXM1 at the transcriptional level. In addition, down-regulation of FOXM1 in CAOV3 xenografts significantly reduced tumor and ascites formation, metastasis, and expression of FOXM1 target genes involved in cell proliferation, migration, or invasion. Collectively, our data link the oncolipid LPA, the oncogene YAP, and the central regulator of cell proliferation/mutagenesis FOXM1 in EOC cells. Moreover, these results provide further support for the importance of these pathways as potential therapeutic targets in EOC.Item Functional significance of Hippo/YAP signaling for drug resistance in colorectal cancer(Wiley, 2018) Song, Ruolan; Gu, Dongsheng; Zhang, Lining; Zhang, Xiaoli; Yu, Beiqin; Liu, Bingya; Xie, Jingwu; Pediatrics, School of MedicineColorectal cancer is a leading cause of cancer‐related death worldwide. While early stage colorectal cancer can be removed by surgery, patients with advanced disease are treated by chemotherapy, with 5‐Fluorouracil (5‐FU) as a main ingredient. However, most patients with advanced colorectal cancer eventually succumb to the disease despite some responded initially. Thus, identifying molecular mechanisms responsible for drug resistance will help design novel strategies to treat colorectal cancer. In this study, we analyzed an acquired 5‐FU resistant cell line, LoVo‐R, and determined that elevated expression of YAP target genes is a major alteration in the 5‐FU resistant cells. Hippo/YAP signaling, a pathway essential for cell polarity, is an important regulator for tissue homeostasis, organ size, and stem cells. We demonstrated that knockdown of YAP1 sensitized LoVo‐R cells to 5‐FU treatment in cultured cells and in mice. The relevance of our studies to colorectal cancer patients is reflected by our discovery that high expression of YAP target genes in the tumor was associated with an increased risk of cancer relapse and poor survival in a larger cohort of colorectal cancer patients who underwent 5‐FU‐related chemotherapy. Taken together, we demonstrate a critical role of YAP signaling for drug resistance in colorectal cancer.Item HE AMOT FAMILY OF PROTEINS BINDS AND ACTIVATES NEDD4 FAMILY LIGASES TO PROMOTE THE UBIQUITINATION OF LATS AND YAP(Office of the Vice Chancellor for Research, 2012-04-13) Adler, Jacob J.; Heller, Brigitte L.; Tuchek, Chad A.; Ingham, Robert J.; Wells, Clark D.Amot adaptor proteins bind and integrate signaling that controls cell po-larity and growth. All three Amot family members (Amot, AmotL1 and AmotL2) directly bind YAP; a transcriptional co-activator that controls the expression of genes involved in organ homeostasis and cell growth. Preven-tion of nuclear accumulation of YAP by either sequestration or degradation in the cytosol abolishes its transcriptional functions and is a major mechanism for growth arrest in response to cellular differentiation. This is mainly thought to be regulated by phosphorylation of YAP by the Hippo kinases LATS1/2. Recently, binding by the Amot proteins was also found to inhibit YAP by sequestering it in the cytosol through both LATS dependent and in-dependent mechanisms. This study identifies a novel mechanism whereby Amot proteins control YAP activation in a Hippo independent mechanism by coupling it to ubiquitination by Nedd4 family ligases. Amot proteins mediate the coupling of Nedd4 ligases with YAP by simultaneously binding both pro-teins via multiple PY motifs that are recognized by WW domains in both YAP and Nedd4. Binding of Nedd4 by Amot is also shown to relieve the auto-inhibition of its ligase activity. This may be a direct consequence of binding Amot or from being re-targeted in cells by Amot proteins to endosomes. Im-portantly, Amot induced ubiquitination of YAP by Nedd4 proteins is shown to enhance the residence of YAP in the nucleus and in YAP activated transcrip-tion. Taken together our data suggest that Amot couples Nedd4 family ubiq-uitin ligases with the transcriptional co-activator YAP to drive the ubiquitination and activation of YAP.Item Regulation of gliosis in the mouse retina(2017-07-21) Dharmarajan, Subramanian; Belecky-Adams, TeriThe glial cells of the retina aid in function and maintenance of the retina. The macroglia, Muller cells and the retinal astrocytes, become reactive following injury or disease in the retina, a response that is characterized by hypertrophy, dedifferentiation, loss of functionality, proliferation, and remodeling of tissue and extracellular matrix (ECM). The microglia which are the resident macrophages, also respond to injury/disease becoming activated, undergoing characteristic molecular and morphological changes, which include regulation of secreted factors, changes in inflammatory response and increased phagocytosis. Reactivity in Muller glia is thought to be the result of secreted signals, such as epidermal growth factor, ciliary neurotrophic factor, and broblast growth factor, which are released at the injury site to interact with quiescent glial cells. Furthermore, microglia and macroglia have been shown by some studies to interact following activation. While BMPs are known to be upregulated following injury in the CNS, little information is available concerning their role in reactive gliosis in the retina. We hypothesize that BMP7 indirectly triggers Muller gliosis by activating microglia. Using RT-qPCR, immunofluorescence and western blot, we assessed changes in gliosis markers in the mouse retinal glia following treatment with BMP. Our results showed that BMP7 was able to trigger Muller cell gliosis in the retina in vitro and in vivo. Furthermore, ablation of microglia lead to a subdued gliosis response in the mouse retina following BMP7 exposure. Thus, BMP7 triggers activation of retinal microglia in addition to the Muller glia. IFN-gamma and IL6 could play a role in microglia mediated activation of Muller glia, following exposure to BMP7. We also assessed the role of the Hippo/YAP pathway in the regulation of gliosis in the retina. We demonstrated that YAP was localized to the nucleus of the Muller cells of the retina and was upregulated in IFN-gamma induced gliosis in the mouse retina.Item The regulation of the serum response network by the RGS RHOGEFS is critical for YAP1 activity and cell fate decisions(2017-07) Lane, Brandon S.; Wells, Clark D.The growth of mammary epithelial cells is regulated by interactions with neighboring cells and by exposure to soluble factors including hormones and growth factors. These cues are integrated within the cell, perpetuating changes onto the organization of the actin cytoskeleton, resulting in altered transcriptional programs. Rho family GTPases regulates actin dynamics that facilitate transcriptional reprogramming. In particular, RhoA induces the formation of actin stress fibers to promote the transcriptional co-activator YAP1 to translocate from the cytosol into the nucleus. There, it co-activates TEAD family transcription factors to drive the expression of pro-growth and survival genes. Rho family members are activated by guanine exchange factors (GEF) and inhibited by GTPase activating proteins (GAP). Here, we determined the relative effects of expression of 67 RhoGEFs and RhoGAPs on the activation of TEAD. This revealed that regulator of G-protein signaling (RGS) domain containing ArhGEF1, ArhGEF11 and ArhGEF12 all promoted YAP1 dependent activation of TEAD. These RhoGEFs mediate signaling from heptahelical receptors that are stimulated by lipid mitogens to activate the heterotrimeric G-proteins Gα12 and Gα13. Consistently, loss of expression of ArhGEF12 and to a lesser degree ArhGEF11 prevented actin stress fiber accumulation and activation of YAP1 mediated signaling by serum. Conversely, several complementary experiments revealed that ArhGEF1 dominantly limits Gα13 selective activation of YAP1 and the mitogen activated protein kinase (MAPK) cascades. Furthermore excessive Gα13 activity results in both high levels of filamentous actin and arrest cells in the G1/0 phase of the cell cycle. This is likely due to the systemic inhibition of cell cycle promoting signaling and a loss of protein translation. Further, YAP1 was found to be essential for the survival of ArhGEF1 silenced cells. Together, these studies define a circuit whereby the rgRhoGEFs regulate Gα 12/13-RhoA signaling flux to regulate cellular growth that is promoted by serum factors.