- Browse by Subject
Browsing by Subject "Xenopus laevis"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item The human mu opioid receptor: modulation of functional desensitization by calcium/calmodulin-dependent protein kinase and protein kinase C(Society for Neuroscience, 1995-03) Mestek, A.; Hurley, J.H.; Bye, L.S.; Campbell, A.D.; Chen, Y.; Tian, M.; Liu, J.; Schulman, H.; Yu, L.; Medical and Molecular Genetics, School of MedicineOpioids are some of the most efficacious analgesics used in humans. Prolonged administration of opioids, however, often causes the development of drug tolerance, thus limiting their effectiveness. To explore the molecular basis of those mechanisms that may contribute to opioid tolerance, we have isolated a cDNA for the human mu opioid receptor, the target of such opioid narcotics as morphine, codeine, methadone, and fentanyl. The receptor encoded by this cDNA is 400 amino acids long with 94% sequence similarity to the rat mu opioid receptor. Transient expression of this cDNA in COS-7 cells produced high-affinity binding sites to mu-selective agonists and antagonists. This receptor displays functional coupling to a recently cloned G-protein-activated K+ channel. When both proteins were expressed in Xenopus oocytes, functional desensitization developed upon repeated stimulation of the mu opioid receptor, as observed by a reduction in K+ current induced by the second mu receptor activation relative to that induced by the first. The extent of desensitization was potentiated by both the multifunctional calcium/calmodulin-dependent protein kinase and protein kinase C. These results demonstrate that kinase modulation is a molecular mechanism by which the desensitization of mu receptor signaling may be regulated at the cellular level, suggesting that this cellular mechanism may contribute to opioid tolerance in humans.Item Regulation of nuclear-cytoplasmic shuttling and function of Family with sequence similarity 13, member A (Fam13a), by B56-containing PP2As and Akt(American Society for Cell Biology, 2015-03-15) Jin, Zhigang; Chung, Jin Wei; Mei, Wenyan; Strack, Stefan; He, Chunyan; Lau, Gee W.; Yang, Jing; Department of Epidemiology, Richard M. Fairbanks School of Public HealthRecent genome-wide association studies reveal that the FAM13A gene is associated with human lung function and a variety of lung diseases, including chronic obstructive pulmonary disease, asthma, lung cancer, and pulmonary fibrosis. The biological functions of Fam13a, however, have not been studied. In an effort to identify novel substrates of B56-containing PP2As, we found that B56-containing PP2As and Akt act antagonistically to control reversible phosphorylation of Fam13a on Ser-322. We show that Ser-322 phosphorylation acts as a molecular switch to control the subcellular distribution of Fam13a. Fam13a shuttles between the nucleus and cytoplasm. When Ser-322 is phosphorylated by Akt, the binding between Fam13a and 14-3-3 is enhanced, leading to cytoplasmic sequestration of Fam13a. B56-containing PP2As dephosphorylate phospho-Ser-322 and promote nuclear localization of Fam13a. We generated Fam13a-knockout mice. Fam13a-mutant mice are viable and healthy, indicating that Fam13a is dispensable for embryonic development and physiological functions in adult animals. Intriguingly, Fam13a has the ability to activate the Wnt pathway. Although Wnt signaling remains largely normal in Fam13a-knockout lungs, depletion of Fam13a in human lung cancer cells causes an obvious reduction in Wnt signaling activity. Our work provides important clues to elucidating the mechanism by which Fam13a may contribute to human lung diseases.Item Studies of Limb Regeneration in Larval Xenopus(Cold Spring Harbor Laboratory Press, 2018-06) Mescher, Anthony L.; Neff, Anton W.; Anatomy and Cell Biology, School of MedicineA basic protocol is given for animal maintenance and surgery in studies of hindlimb regeneration in larval Xenopus laevis. Unlike urodele limbs, those of larval frogs typically show much more variation in the extent of regeneration after amputation. Such variation can be reduced by optimizing the conditions of larval maintenance to regulate the rates of growth and development, by selecting only larvae with normal rates of growth and morphological development for experimental use, and by attention to precision and consistency in the proximo–distal level of surgical amputation.