- Browse by Subject
Browsing by Subject "Xenograft model"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item BreastDefend enhances effect of tamoxifen in estrogen receptor-positive human breast cancer in vitro and in vivo(BioMed Central, 2017-02-16) Cheng, Shujie; Castillo, Victor; Welty, Matt; Alvarado, Mark; Eliaz, Isaac; Temm, Constance J.; Sandusky, George E.; Sliva, Daniel; Department of Pathology and Laboratory Medicine, IU School of MedicineBACKGROUND: Tamoxifen (TAM) has been widely used for the treatment of estrogen receptor (ER)-positive breast cancer and its combination with other therapies is being actively investigated as a way to increase efficacy and decrease side effects. Here, we evaluate the therapeutic potential of co-treatment with TAM and BreastDefend (BD), a dietary supplement formula, in ER-positive human breast cancer. METHODS: Cell proliferation and apoptosis were determined in ER-positive human breast cancer cells MCF-7 by MTT assay, quantitation of cytoplasmic histone-associated DNA fragments and expression of cleaved PARP, respectively. The molecular mechanism was identified using RNA microarray analysis and western blotting. Tumor tissues from xenograft mouse model were analyzed by immunohistochemistry. RESULTS: Our data clearly demonstrate that a combination of 4-hydroxytamoxifen (4-OHT) with BD lead to profound inhibition of cell proliferation and induction of apoptosis in MCF-7 cells. This effect is consistent with the regulation of apoptotic and TAM resistant genes at the transcription and translation levels. Importantly, TAM and BD co-treatment significantly enhanced apoptosis, suppressed tumor growth and reduced tumor weight in a xenograft model of human ER-positive breast cancer. CONCLUSION: BD sensitized ER-positive human breast cancer cells to 4-OHT/TAM treatment in vitro and in vivo. BreastDefend can be used in an adjuvant therapy to increase the therapeutic effect of tamoxifen in patients with ER-positive breast cancer.Item Corrigendum: Protein arginine methyltransferase 1 is a therapeutic vulnerability in multiple myeloma(Frontiers Media, 2023-11-15) Nguyen, Hong Phuong; Le, Anh Quynh; Liu, Enze; Cesarano, Annamaria; DiMeo, Francesco; Perna, Fabiana; Kapur, Reuben; Walker, Brian A.; Tran, Ngoc Tung; Pediatrics, School of Medicine[This corrects the article DOI: 10.3389/fimmu.2023.1239614.].Item Protein arginine methyltransferase 1 is a therapeutic vulnerability in multiple myeloma(Frontiers Media, 2023-08-04) Nguyen, Hong Phuong; Le, Anh Quynh; Liu, Enze; Cesarano, Annamaria; DiMeo, Francesco; Perna, Fabiana; Kapur, Reuben; Walker, Brian A.; Tran, Ngoc Tung; Pediatrics, School of MedicineMultiple myeloma (MM) is a devastating plasma cell malignancy characterized by the expansion of aberrant monoclonal plasma cells in the bone marrow, leading to severe clinical manifestations and poor prognosis, particularly in relapsed/refractory cases. Identifying novel therapeutic targets is crucial to improve treatment outcomes in these patients. In this study, we investigated the role of the protein arginine methyltransferase 1 (PRMT1) in MM pathogenesis and explored its potential as a therapeutic target. We observed that PRMT1, responsible for most asymmetric di-methylation in cells, exhibited the highest expression among PRMT family members in MM cell lines and primary MM cells. Importantly, PRMT1 expression was significantly elevated in relapsed/refractory patients compared to newly diagnosed patients. High expression of PRMT1 expression was strongly associated with poor prognosis. We found that genetic or enzymatic inhibition of PRMT1 impaired MM cell growth, induced cell cycle arrest, and triggered cell death. Treatment with MS023, a potent PRMT type I inhibitor, demonstrated a robust inhibitory effect on the viability of primary cells isolated from newly diagnosed and proteasome inhibitor-relapsed/refractory patients in a dose-dependent manner. Suppression of PRMT1 downregulated genes related to cell division and upregulated genes associated with apoptosis pathway. We also found that genes related to immune response and lymphocyte activation were significantly upregulated in PRMT1-suppressed cells. Notably, the activation status of T cells was strikingly enhanced upon co-culturing with PRMT1-KO MM cells. In vivo studies using a xenograft model revealed that targeting PRMT1 by either CRISPR/Cas9-mediated knockout or MS023 treatment significantly attenuated MM tumor growth and prolonged the survival of tumor-bearing mice. Histological analysis further confirmed increased apoptotic cell death in MS023-treated tumors. Collectively, our findings establish PRMT1 as an indispensable and novel therapeutic vulnerability in MM. The elevated expression of PRMT1 in relapsed/refractory patients underscores its potential as a target for overcoming treatment resistance. Moreover, our results highlight the efficacy of MS023 as a promising therapeutic agent against MM, offering new avenues for therapeutic approaches in relapsed/refractory MM.