- Browse by Subject
Browsing by Subject "Wnt3a"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Wnt3a-induced ST2 decellularized matrix ornamented PCL scaffold for bone tissue engineering(Tech Science Press, 2022) Wang, Xiaofang; Tu, Xiaolin; Ma, Yufei; Chen, Jie; Song, Yang; Liu, Guangliang; Anatomy, Cell Biology and Physiology, School of MedicineThe limited bioactivity of scaffold materials is an important factor that restricts the development of bone tissue engineering. Wnt3a activates the classic Wnt/β-catenin signaling pathway which effects bone growth and development by the accumulation of β-catenin in the nucleus. In this study, we fabricated 3D printed PCL scaffold with Wnt3a-induced murine bone marrow-derived stromal cell line ST2 decellularized matrix (Wnt3a-ST2-dCM-PCL) and ST2 decellularized matrix (ST2-dCM-PCL) by freeze-thaw cycle and DNase decellularization treatment which efficiently decellularized >90% DNA while preserved most protein. Compared to ST2-dCM-PCL, Wnt3a-ST2-dCM-PCL significantly enhanced newly-seeded ST2 proliferation, osteogenic differentiation and upregulated osteogenic marker genes alkaline phosphatase (Alp), Runx2, type I collagen (Col 1) and osteocalcin (Ocn) mRNA expression. After 14 days of osteogenic induction, Wnt3a-ST2-dCM-PCL promoted ST2 mineralization. These results demonstrated that Wnt3a-induced ST2 decellularized matrix improve scaffold materials’ osteoinductivity and osteoconductivity.