- Browse by Subject
Browsing by Subject "Wnt"
Now showing 1 - 10 of 21
Results Per Page
Sort Options
Item Bmi1 Regulates Wnt Signaling in Hematopoietic Stem and Progenitor Cells(Springer, 2021) Yu, Hao; Gao, Rui; Chen, Sisi; Liu, Xicheng; Wang, Qiang; Cai, Wenjie; Vemula, Sasidhar; Fahey, Aidan C.; Henley, Danielle; Kobayashi, Michihiro; Liu, Stephen Z.; Qian, Zhijian; Kapur, Reuben; Broxmeyer, Hal E.; Gao, Zhonghua; Xi, Rongwen; Liu, Yan; Pediatrics, School of MedicinePolycomb group protein Bmi1 is essential for hematopoietic stem cell (HSC) self-renewal and terminal differentiation. However, its target genes in hematopoietic stem and progenitor cells are largely unknown. We performed gene expression profiling assays and found that genes of the Wnt signaling pathway are significantly elevated in Bmi1 null hematopoietic stem and progenitor cells (HSPCs). Bmi1 is associated with several genes of the Wnt signaling pathway in hematopoietic cells. Further, we found that Bmi1 represses Wnt gene expression in HSPCs. Importantly, loss of β-catenin, which reduces Wnt activation, partially rescues the HSC self-renewal and differentiation defects seen in the Bmi1 null mice. Thus, we have identified Bmi1 as a novel regulator of Wnt signaling pathway in HSPCs. Given that Wnt signaling pathway plays an important role in hematopoiesis, our studies suggest that modulating Wnt signaling may hold potential for enhancing HSC self-renewal, thereby improving the outcomes of HSC transplantation.Item Co-deletion of Lrp5 and Lrp6 in the skeleton severely diminishes bone gain from sclerostin antibody administration(Elsevier, 2021-02) Lim, Kyung-Eun; Bullock, Whitney A.; Horan, Daniel J.; Williams, Bart O.; Warman, Matthew L.; Robling, Alexander G.; Anatomy and Cell Biology, School of MedicineThe cysteine knot protein sclerostin is an osteocyte-derived secreted inhibitor of the Wnt co-receptors LRP5 and LRP6. LRP5 plays a dominant role in bone homeostasis, but we previously reported that Sost/sclerostin suppression significantly increased osteogenesis regardless of Lrp5 presence or absence. Those observations suggested that the bone forming effects of sclerostin inhibition can occur through Lrp6 (when Lrp5 is suppressed), or through other yet undiscovered mechanisms independent of Lrp5/6. To distinguish between these two possibilities, we generated mice with compound deletion of Lrp5 and Lrp6 selectively in bone, and treated them with sclerostin monoclonal antibody (Scl-mAb). All mice were homozygous flox for both Lrp5 and Lrp6 (Lrp5f/f; Lrp6f/f), and varied only in whether or not they carried the Dmp1-Cre transgene. Positive (Cre+) and negative (Cre−) mice were injected with Scl-mAb or vehicle from 4.5 to 14 weeks of age. Vehicle-treated Cre+ mice exhibited significantly reduced skeletal properties compared to vehicle-treated Cre− mice, as assessed by DXA, μCT, pQCT, and histology, indicating that Lrp5/6 deletions were effective and efficient. Scl-mAb treatment improved nearly every bone-related parameter among Cre− mice, but the same treatment in Cre+ mice resulted in little to no improvement in skeletal properties. For the few endpoints where Cre+ mice responded to Scl-mAb, it is likely that antibody-induced promotion of Wnt signaling occurred in cell types earlier in the mesenchymal/osteoblast differentiation pathway than the Dmp1-expressing stage. This latter conclusion was supported by changes in some histomorphometric parameters. In conclusion, unlike with the deletion of Lrp5 alone, the bone-selective late-stage co-deletion of Lrp5 and Lrp6 significantly impairs or completely nullifies the osteogenic action of Scl-mAb, and highlights a major role for both Lrp5 and Lrp6 in the mechanism of action for the bone-building effects of sclerostin antibody.Item Current Thoughts of Notch’s Role in Myoblast Regulation and Muscle-Associated Disease(MDPI, 2021-11-29) Gerrard, Jeffrey C.; Hay, Jamison P.; Adams, Ryan N.; Williams, James C., III.; Huot, Joshua R.; Weathers, Kaitlin M.; Marino, Joseph S.; Arthur, Susan T.; Surgery, School of MedicineThe evolutionarily conserved signaling pathway Notch is unequivocally essential for embryogenesis. Notch's contribution to the muscle repair process in adult tissue is complex and obscure but necessary. Notch integrates with other signals in a functional antagonist manner to direct myoblast activity and ultimately complete muscle repair. There is profound recent evidence describing plausible mechanisms of Notch in muscle repair. However, the story is not definitive as evidence is slowly emerging that negates Notch's importance in myoblast proliferation. The purpose of this review article is to examine the prominent evidence and associated mechanisms of Notch's contribution to the myogenic repair phases. In addition, we discuss the emerging roles of Notch in diseases associated with muscle atrophy. Understanding the mechanisms of Notch's orchestration is useful for developing therapeutic targets for disease.Item Early Wnt Signaling Activation Promotes Inner Ear Differentiation via Cell Caudalization in Mouse Stem Cell-Derived Organoids(Oxford University Press, 2023) Tang, Pei-Ciao; Chen, Li; Singh, Sunita; Groves, Andrew K.; Koehler, Karl R.; Liu, Xue Zhong; Nelson, Rick F.; Otolaryngology -- Head and Neck Surgery, School of MedicineThe inner ear is derived from the otic placode, one of the numerous cranial sensory placodes that emerges from the pre-placodal ectoderm (PPE) along its anterior-posterior axis. However, the molecular dynamics underlying how the PPE is regionalized are poorly resolved. We used stem cell-derived organoids to investigate the effects of Wnt signaling on early PPE differentiation and found that modulating Wnt signaling significantly increased inner ear organoid induction efficiency and reproducibility. Alongside single-cell RNA sequencing, our data reveal that the canonical Wnt signaling pathway leads to PPE regionalization and, more specifically, medium Wnt levels during the early stage induce (1) expansion of the caudal neural plate border (NPB), which serves as a precursor for the posterior PPE, and (2) a caudal microenvironment that is required for otic specification. Our data further demonstrate Wnt-mediated induction of rostral and caudal cells in organoids and more broadly suggest that Wnt signaling is critical for anterior-posterior patterning in the PPE.Item The Effect of Overexpression of Lrp5 on the Temporomandibular Joint(Sage, 2021) Utreja, Achint; Motevasel, Hengameh; Bain, Carol; Holland, Robert; Robling, Alexander; Orthodontics and Oral Facial Genetics, School of DentistryObjective: The temporomandibular joint (TMJ) is a unique fibrocartilaginous joint that adapts to mechanical loading through cell signaling pathways such as the Wnt pathway. Increased expression of low-density lipoprotein receptor-related protein 5 (Lrp5), a co-receptor of the Wnt pathway, is associated with a high bone mass (HBM) phenotype. The objective of this study was to analyze the effect of overexpression of Lrp5 on the subchondral bone and cartilage of the TMJ in mice exhibiting the HBM phenotype. Design: Sixteen-week-old Lrp5 knock-in transgenic mice carrying either the A214V (EXP-A) or G171V (EXP-G) missense mutations, and wildtype controls (CTRL) were included in this study. Fluorescent bone labels, calcein, alizarin complexone, and demeclocycline were injected at 3.5, 7.5, and 11.5 weeks of age, respectively. The left mandibular condyle was used to compare the subchondral bone micro-computed tomography parameters and the right TMJ was used for histological analyses. Cartilage thickness, matrix proteoglycan accumulation, and immunohistochemical localization of Lrp5 and sclerostin were compared between the groups. Results: Subchondral bone volume (BV) and percent bone volume (BV/TV) were significantly increased in both EXP-A and EXP-G compared with CTRL (P < 0.05) whereas trabecular spacing (Tb.Sp) was decreased. Cartilage thickness, extracellular matrix production, and expression of Lrp5 and Sost were all increased in the experimental groups. The separation between the fluorescent bone labels indicated increased endochondral maturation between 3.5 and 7.5 weeks. Conclusions: These data demonstrate that Lrp5 overexpression leads to adaptation changes in the mandibular condylar cartilage of the TMJ to prevent cartilage degradation.Item Expression of a Degradation‐Resistant β‐Catenin Mutant in Osteocytes Protects the Skeleton From Mechanodeprivation‐Induced Bone Wasting(Wiley, 2019) Bullock, Whitney A.; Hoggatt, April; Horan, Daniel J.; Lewis, Karl; Yokota, Hiroki; Hann, Steven; Warman, Matthew L.; Sebastian, Aimy; Loots, Gabriela G.; Pavalko, Fredrick M.; Robling, Alexander G.; Anatomy and Cell Biology, IU School of MedicineMechanical stimulation is a key regulator of bone mass, maintenance, and turnover. Wnt signaling is a key regulator of mechanotransduction in bone, but the role of β‐catenin—an intracellular signaling node in the canonical Wnt pathway—in disuse mechanotransduction is not defined. Using the β‐catenin exon 3 flox (constitutively active [CA]) mouse model, in conjunction with a tamoxifen‐inducible, osteocyte‐selective Cre driver, we evaluated the effects of degradation‐resistant β‐catenin on bone properties during disuse. We hypothesized that if β‐catenin plays an important role in Wnt‐mediated osteoprotection, then artificial stabilization of β‐catenin in osteocytes would protect the limbs from disuse‐induced bone wasting. Two disuse models were tested: tail suspension, which models fluid shift, and botulinum‐toxin (botox)‐induced muscle paralysis, which models loss of muscle force. Tail suspension was associated with a significant loss of tibial bone mass and density, reduced architectural properties, and decreased bone formation indices in uninduced (control) mice, as assessed by dual‐energy X‐ray absorptiometry (DXA), micro‐computed tomography (µCT), and histomorphometry. Activation of the βcatCA allele in tail‐suspended mice resulted in little to no change in those properties; ie, these mice were protected from bone loss. Similar protective effects were observed among botox‐treated mice when the βcatCA was activated. RNAseq analysis of altered gene regulation in tail‐suspended mice yielded 35 genes, including Wnt11, Gli1, Nell1, Gdf5, and Pgf, which were significantly differentially regulated between tail‐suspended β‐catenin stabilized mice and tail‐suspended nonstabilized mice. Our findings indicate that selectively targeting/blocking of β‐catenin degradation in bone cells could have therapeutic implications in mechanically induced bone disease.Item Identifying therapeutic targets in gastric cancer: the current status and future direction(Oxford University Press, 2016-01) Yu, Beiqin; Xie, Jingwu; Department of Pediatrics, IU School of MedicineGastric cancer is the third leading cause of cancer-related death worldwide. Our basic understanding of gastric cancer biology falls behind that of many other cancer types. Current standard treatment options for gastric cancer have not changed for the last 20 years. Thus, there is an urgent need to establish novel strategies to treat this deadly cancer. Successful clinical trials with Gleevec in CML and gastrointestinal stromal tumors have set up an example for targeted therapy of cancer. In this review, we will summarize major progress in classification, therapeutic options of gastric cancer. We will also discuss molecular mechanisms for drug resistance in gastric cancer. In addition, we will attempt to propose potential future directions in gastric cancer biology and drug targets.Item Improving Bone Health by Optimizing the Anabolic Action of Wnt Inhibitor Multitargeting(Wiley, 2021-05-06) Choi, Roy B.; Bullock, Whitney A.; Hoggatt, April M.; Loots, Gabriela G.; Genetos, Damian C.; Robling, Alexander G.; Anatomy and Cell Biology, School of MedicineSclerostin antibody (romosozumab) was recently approved for clinical use in the United States to treat osteoporosis. We and others have explored Wnt‐based combination therapy to disproportionately improve the anabolic effects of sclerostin inhibition, including cotreatment with sclerostin antibody (Scl‐mAb) and Dkk1 antibody (Dkk1‐mAb). To determine the optimal ratio of Scl‐mAb and Dkk1‐mAb for producing maximal anabolic action, the proportion of Scl‐mAb and Dkk1‐mAb were systematically varied while holding the total antibody dose constant. A 3:1 mixture of Scl‐mAb to Dkk1‐mAb produced two to three times as much cancellous bone mass as an equivalent dose of Scl‐mAb alone. Further, a 75% reduction in the dose of the 3:1 mixture was equally efficacious to a full dose of Scl‐mAb in the distal femur metaphysis. The Scl‐mAb/Dkk1‐mAb combination approach was highly efficacious in the cancellous bone mass, but the cortical compartment was much more subtly affected. The osteoanabolic effects of Wnt pathway targeting can be made more efficient if multiple antagonists are simultaneously targeted. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.Item Modulation of Wnt Signaling Enhances Inner Ear Organoid Development in 3D Culture(Plos, 2016-09-08) DeJong, Rachel E.; Liu, Xiao-Ping; Deig, Christopher R.; Heller, Stefan; Koehler, Karl R.; Hashino, Eri; Department of Otololaryngology-Head and Neck Surgery, IU School of MedicineStem cell-derived inner ear sensory epithelia are a promising source of tissues for treating patients with hearing loss and dizziness. We recently demonstrated how to generate inner ear sensory epithelia, designated as inner ear organoids, from mouse embryonic stem cells (ESCs) in a self-organizing 3D culture. Here we improve the efficiency of this culture system by elucidating how Wnt signaling activity can drive the induction of otic tissue. We found that a carefully timed treatment with the potent Wnt agonist CHIR99021 promotes induction of otic vesicles-a process that was previously self-organized by unknown mechanisms. The resulting otic-like vesicles have a larger lumen size and contain a greater number of Pax8/Pax2-positive otic progenitor cells than organoids derived without the Wnt agonist. Additionally, these otic-like vesicles give rise to large inner ear organoids with hair cells whose morphological, biochemical and functional properties are indistinguishable from those of vestibular hair cells in the postnatal mouse inner ear. We conclude that Wnt signaling plays a similar role during inner ear organoid formation as it does during inner ear development in the embryo.Item New Insights into Wnt-Lrp5/6-β-Catenin Signaling in Mechanotransduction(Frontiers Media S.A., 2015-01-20) Kang, Kyung Shin; Robling, Alexander G.; Department of Anatomy and Cell Biology, IU School of MedicineMechanical loading is essential to maintain normal bone metabolism and the balance between bone formation and resorption. The cellular mechanisms that control mechanotransduction are not fully defined, but several key pathways have been identified. We discuss the roles of several components of the Wnt signaling cascade, namely Lrp5, Lrp6, and β-catenin in mechanical loading-induced bone formation. Lrp5 is an important Wnt co-receptor for regulating bone mass and mechanotransduction, and appears to function principally by augmenting bone formation. Lrp6 also regulates bone mass but its action might involve resorption as well as formation. The role of Lrp6 in mechanotransduction is unclear. Studies addressing the role of β-catenin in bone metabolism and mechanotransduction highlight the uncertainties in downstream modulators of Lrp5 and Lrp6. Taken together, these data indicate that mechanical loading might affect bone regulation triggering the canonical Wnt signaling (and perhaps other pathways) not only via Lrp5 but also via Lrp6. Further work is needed to clarify the role of the Wnt signaling pathway in Lrp5 and/or Lrp6-mediated mechanotransduction, which could eventually lead to powerful therapeutic agents that might mimic the anabolic effects of mechanical stimulation.
- «
- 1 (current)
- 2
- 3
- »