- Browse by Subject
Browsing by Subject "Whole exome sequencing"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Charcot-Marie-Tooth gene, SBF2, associated with taxaneinduced peripheral neuropathy in African Americans(Impact Journals, 2016-12-13) Schneider, Bryan P.; Lai, Dongbing; Shen, Fei; Jiang, Guanglong; Radovich, Milan; Li, Lang; Gardner, Laura; Miller, Kathy D.; O’Neill, Anne; Sparano, Joseph A.; Xue, Gloria; Foroud, Tatiana; Sledge Jr., George W.; Department of Medicine, IU School of MedicinePURPOSE: Taxane-induced peripheral neuropathy (TIPN) is one of the most important survivorship issues for cancer patients. African Americans (AA) have previously been shown to have an increased risk for this toxicity. Germline predictive biomarkers were evaluated to help identify a priori which patients might be at extraordinarily high risk for this toxicity. EXPERIMENTAL DESIGN: Whole exome sequencing was performed using germline DNA from 213 AA patients who received a standard dose and schedule of paclitaxel in the adjuvant, randomized phase III breast cancer trial, E5103. Cases were defined as those with either grade 3-4 (n=64) or grade 2-4 (n=151) TIPN and were compared to controls (n=62) that were not reported to have experienced TIPN. We retained for analysis rare variants with a minor allele frequency <3% and which were predicted to be deleterious by protein prediction programs. A gene-based, case-control analysis using SKAT was performed to identify genes that harbored an imbalance of deleterious variants associated with increased risk of TIPN. RESULTS: Five genes had a p-value < 10-4 for grade 3-4 TIPN analysis and three genes had a p-value < 10-4 for the grade 2-4 TIPN analysis. For the grade 3-4 TIPN analysis, SET binding factor 2 (SBF2) was significantly associated with TIPN (p-value=4.35 x10-6). Five variants were predicted to be deleterious in SBF2. Inherited mutations in SBF2 have previously been associated with autosomal recessive, Type 4B2 Charcot-Marie-Tooth (CMT) disease. CONCLUSION: Rare variants in SBF2, a CMT gene, predict an increased risk of TIPN in AA patients receiving paclitaxel.Item Cytochrome P450 Oxidoreductase (POR) Associated with Severe Paclitaxel-Induced Peripheral Neuropathy in Patients of European Ancestry from ECOG-ACRIN E5103(American Association for Cancer Research, 2023) Shen, Fei; Jiang, Guanglong; Philips, Santosh; Gardner, Laura; Xue, Gloria; Cantor, Erica; Ly, Reynold C.; Osei, Wilberforce; Wu, Xi; Dang, Chau; Northfelt, Donald; Skaar, Todd; Miller, Kathy D.; Sledge, George W.; Schneider, Bryan P.; Medicine, School of MedicinePurpose: Paclitaxel is a widely used anticancer therapeutic. Peripheral neuropathy is the dose-limiting toxicity and negatively impacts quality of life. Rare germline gene markers were evaluated for predicting severe taxane-induced peripheral neuropathy (TIPN) in the patients of European ancestry. In addition, the impact of Cytochrome P450 (CYP) 2C8, CYP3A4, and CYP3A5 metabolizer status on likelihood of severe TIPN was also assessed. Experimental design: Whole-exome sequencing analyses were performed in 340 patients of European ancestry who received a standard dose and schedule of paclitaxel in the adjuvant, randomized phase III breast cancer trial, E5103. Patients who experienced grade 3-4 (n = 168) TIPN were compared to controls (n = 172) who did not experience TIPN. For the analyses, rare variants with a minor allele frequency ≤ 3% and predicted to be deleterious by protein prediction programs were retained. A gene-based, case-control analysis using SKAT was performed to identify genes that harbored an imbalance of deleterious variants associated with increased risk of severe TIPN. CYP star alleles for CYP2C8, CYP3A4, and CYP3A5 were called. An additive logistic regression model was performed to test the association of CYP2C8, CYP3A4, and CYP3A5 metabolizer status with severe TIPN. Results: Cytochrome P450 oxidoreductase (POR) was significantly associated with severe TIPN (P value = 1.8 ×10-6). Six variants were predicted to be deleterious in POR. There were no associations between CYP2C8, CYP3A4, or CYP3A5 metabolizer status with severe TIPN. Conclusions: Rare variants in POR predict an increased risk of severe TIPN in patients of European ancestry who receive paclitaxel.Item Hypoplastic Left Heart Syndrome Sequencing Reveals a Novel NOTCH1 Mutation in a Family with Single Ventricle Defects(Springer Nature, 2017-08) Durbin, Matthew D.; Cadar, Adrian G.; Williams, Charles H.; Guo, Yan; Bichell, David P.; Su, Yan Ru; Hong, Charles C.; Pediatrics, School of MedicineHypoplastic left heart syndrome (HLHS) has been associated with germline mutations in 12 candidate genes and a recurrent somatic mutation in HAND1 gene. Using targeted and whole exome sequencing (WES) of heart tissue samples from HLHS patients, we sought to estimate the prevalence of somatic and germline mutations associated with HLHS. We performed Sanger sequencing of the HAND1 gene on 14 ventricular (9 LV and 5 RV) samples obtained from HLHS patients, and WES of 4 LV, 2 aortic, and 4 matched PBMC samples, analyzing for sequence discrepancy. We also screened for mutations in the 12 candidate genes implicated in HLHS. We found no somatic mutations in our HLHS cohort. However, we detected a novel germline frameshift/stop-gain mutation in NOTCH1 in a HLHS patient with a family history of both HLHS and hypoplastic right heart syndrome (HRHS). Our study, involving one of the first familial cases of single ventricle defects linked to a specific mutation, strengthens the association of NOTCH1 mutations with HLHS and suggests that the two morphologically distinct single ventricle conditions, HLHS and HRHS, may share a common molecular and cellular etiology. Finally, somatic mutations in the LV are an unlikely contributor to HLHS.Item Loss-of-function OGFRL1 variants identified in autosomal recessive cherubism families(Oxford University Press, 2024-04-09) Kittaka, Mizuho; Mizuno, Noriyoshi; Morino, Hiroyuki; Yoshimoto, Tetsuya; Zhu, Tianli; Liu, Sheng; Wang, Ziyi; Mayahara, Kotoe; Iio, Kyohei; Kondo, Kaori; Kondo, Toshio; Hayashi, Tatsuhide; Coghlan, Sarah; Teno, Yayoi; Doan, Andrew Anh Phung; Levitan, Marcus; Choi, Roy B.; Matsuda, Shinji; Ouhara, Kazuhisa; Wan, Jun; Cassidy, Annelise M.; Pelletier, Stephane; Nampoothiri, Sheela; Urtizberea, Andoni J.; Robling, Alexander G.; Ono, Mitsuaki; Kawakami, Hideshi; Reichenberger, Ernst J.; Ueki, Yasuyoshi; Anatomy, Cell Biology and Physiology, School of MedicineCherubism (OMIM 118400) is a rare craniofacial disorder in children characterized by destructive jawbone expansion due to the growth of inflammatory fibrous lesions. Our previous studies have shown that gain-of-function mutations in SH3 domain-binding protein 2 (SH3BP2) are responsible for cherubism and that a knock-in mouse model for cherubism recapitulates the features of cherubism, such as increased osteoclast formation and jawbone destruction. To date, SH3BP2 is the only gene identified to be responsible for cherubism. Since not all patients clinically diagnosed with cherubism had mutations in SH3BP2, we hypothesized that there may be novel cherubism genes and that these genes may play a role in jawbone homeostasis. Here, using whole exome sequencing, we identified homozygous loss-of-function variants in the opioid growth factor receptor like 1 (OGFRL1) gene in 2 independent autosomal recessive cherubism families from Syria and India. The newly identified pathogenic homozygous variants were not reported in any variant databases, suggesting that OGFRL1 is a novel gene responsible for cherubism. Single cell analysis of mouse jawbone tissue revealed that Ogfrl1 is highly expressed in myeloid lineage cells. We generated OGFRL1 knockout mice and mice carrying the Syrian frameshift mutation to understand the in vivo role of OGFRL1. However, neither mouse model recapitulated human cherubism or the phenotypes exhibited by SH3BP2 cherubism mice under physiological and periodontitis conditions. Unlike bone marrow-derived M-CSF-dependent macrophages (BMMs) carrying the SH3BP2 cherubism mutation, BMMs lacking OGFRL1 or carrying the Syrian mutation showed no difference in TNF-ɑ mRNA induction by LPS or TNF-ɑ compared to WT BMMs. Osteoclast formation induced by RANKL was also comparable. These results suggest that the loss-of-function effects of OGFRL1 in humans differ from those in mice and highlight the fact that mice are not always an ideal model for studying rare craniofacial bone disordersItem Multi-region Whole Exome Sequencing of Intraductal Papillary Mucinous Neoplasms Reveals Frequent Somatic KLF4 Mutations Predominantly in Low-Grade Regions(BMJ, 2021) Fujikura, Kohei; Hosoda, Waki; Felsenstein, Matthäus; Song, Qianqian; Reiter, Johannes G.; Zheng, Lily; Guthrie, Violeta Beleva; Rincon, Natalia; Molin, Marco Dal; Dudley, Jonathan; Cohen, Joshua D.; Wang, Pei; Fischer, Catherine G.; Braxton, Alicia M.; Noë, Michaël; Jongepier, Martine; Castillo, Carlos Fernández-del; Mino-Kenudson, Mari; Schmidt, C. Max; Yip-Schneider, Michele T.; Lawlor, Rita T.; Salvia, Roberto; Roberts, Nicholas J.; Thompson, Elizabeth D.; Karchin, Rachel; Lennon, Anne Marie; Jiao, Yuchen; Wood, Laura D.; Surgery, School of MedicineObjective: Intraductal papillary mucinous neoplasms (IPMNs) are non-invasive precursor lesions that can progress to invasive pancreatic cancer and are classified as low-grade or high-grade based on the morphology of the neoplastic epithelium. We aimed to compare genetic alterations in low-grade and high-grade regions of the same IPMN in order to identify molecular alterations underlying neoplastic progression. Design: We performed multiregion whole exome sequencing on tissue samples from 17 IPMNs with both low-grade and high-grade dysplasia (76 IPMN regions, including 49 from low-grade dysplasia and 27 from high-grade dysplasia). We reconstructed the phylogeny for each case, and we assessed mutations in a novel driver gene in an independent cohort of 63 IPMN cyst fluid samples. Results: Our multiregion whole exome sequencing identified KLF4, a previously unreported genetic driver of IPMN tumorigenesis, with hotspot mutations in one of two codons identified in >50% of the analyzed IPMNs. Mutations in KLF4 were significantly more prevalent in low-grade regions in our sequenced cases. Phylogenetic analyses of whole exome sequencing data demonstrated diverse patterns of IPMN initiation and progression. Hotspot mutations in KLF4 were also identified in an independent cohort of IPMN cyst fluid samples, again with a significantly higher prevalence in low-grade IPMNs. Conclusion: Hotspot mutations in KLF4 occur at high prevalence in IPMNs. Unique among pancreatic driver genes, KLF4 mutations are enriched in low-grade IPMNs. These data highlight distinct molecular features of low-grade and high-grade dysplasia and suggest diverse pathways to high-grade dysplasia via the IPMN pathway.Item Partial uniparental isodisomy of chromosome 16 unmasks a deleterious biallelic mutation in IFT140 that causes Mainzer-Saldino syndrome(BMC, 2017-07-19) Helm, Benjamin M.; Willer, Jason R.; Sadeghpour, Azita; Golzio, Christelle; Crouch, Eric; Vergano, Samantha Schrier; Katsanis, Nicholas; Davis, Erica E.; Medical and Molecular Genetics, School of MedicineBACKGROUND: The ciliopathies represent an umbrella group of >50 clinical entities that share both clinical features and molecular etiology underscored by structural and functional defects of the primary cilium. Despite the advances in gene discovery, this group of entities continues to pose a diagnostic challenge, in part due to significant genetic and phenotypic heterogeneity and variability. We consulted a pediatric case from asymptomatic, non-consanguineous parents who presented as a suspected ciliopathy due to a constellation of retinal, renal, and skeletal findings. RESULTS: Although clinical panel sequencing of genes implicated in nephrotic syndromes yielded no likely causal mutation, an oligo-SNP microarray identified a ~20-Mb region of homozygosity, with no altered gene dosage, on chromosome 16p13. Intersection of the proband's phenotypes with known disease genes within the homozygous region yielded a single candidate, IFT140, encoding a retrograde intraflagellar transport protein implicated previously in several ciliopathies, including the phenotypically overlapping Mainzer-Saldino syndrome (MZSDS). Sanger sequencing yielded a maternally inherited homozygous c.634G>A; p.Gly212Arg mutation altering the exon 6 splice donor site. Functional studies in cells from the proband showed that the locus produced two transcripts: a majority message containing a mis-splicing event that caused a premature termination codon and a minority message homozygous for the p.Gly212Arg allele. Zebrafish in vivo complementation studies of the latter transcript demonstrated a loss of function effect. Finally, we conducted post-hoc trio-based whole exome sequencing studies to (a) test the possibility of other causal loci in the proband and (b) explain the Mendelian error of segregation for the IFT140 mutation. We show that the proband harbors a chromosome 16 maternal heterodisomy, with segmental isodisomy at 16p13, likely due to a meiosis I error in the maternal gamete. CONCLUSIONS: Using clinical phenotyping combined with research-based genetic and functional studies, we have characterized a recurrent IFT140 mutation in the proband; together, these data are consistent with MZSDS. Additionally, we report a rare instance of a uniparental isodisomy unmasking a deleterious mutation to cause a ciliary disorder.