- Browse by Subject
Browsing by Subject "Wheeze"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Chromosome 17q12-21 Variants Are Associated with Multiple Wheezing Phenotypes in Childhood(American Thoracic Society, 2021) Hallmark, Brian; Wegienka, Ganesa; Havstad, Suzanne; Billheimer, Dean; Ownby, Dennis; Mendonca, Eneida A.; Gress, Lisa; Stern, Debra A.; Biagini Myers, Jocelyn; Khurana Hershey, Gurjit K.; Hoepner, Lori; Miller, Rachel L.; Lemanske, Robert F.; Jackson, Daniel J.; Gold, Diane R.; O’Connor, George T.; Nicolae, Dan L.; Gern, James E.; Ober, Carole; Wright, Anne L.; Martinez, Fernando D.; ECHO-CREW; Pediatrics, School of MedicineRationale: Birth cohort studies have identified several temporal patterns of wheezing, only some of which are associated with asthma. Whether 17q12-21 genetic variants, which are closely associated with asthma, are also associated with childhood wheezing phenotypes remains poorly explored. Objectives: To determine whether wheezing phenotypes, defined by latent class analysis (LCA), are associated with nine 17q12-21 SNPs and if so, whether these relationships differ by race/ancestry. Methods: Data from seven U.S. birth cohorts (n = 3,786) from the CREW (Children’s Respiratory Research and Environment Workgroup) were harmonized to represent whether subjects wheezed in each year of life from birth until age 11 years. LCA was then performed to identify wheeze phenotypes. Genetic associations between SNPs and wheeze phenotypes were assessed separately in European American (EA) (n = 1,308) and, for the first time, in African American (AA) (n = 620) children. Measurements and Main Results: The LCA best supported four latent classes of wheeze: infrequent, transient, late-onset, and persistent. Odds of belonging to any of the three wheezing classes (vs. infrequent) increased with the risk alleles for multiple SNPs in EA children. Only one SNP, rs2305480, showed increased odds of belonging to any wheezing class in both AA and EA children. Conclusions: These results indicate that 17q12-21 is a “wheezing locus,” and this association may reflect an early life susceptibility to respiratory viruses common to all wheezing children. Which children will have their symptoms remit or reoccur during childhood may be independent of the influence of rs2305480.Item Correction: Improvements in lung function following vitamin C supplementation to pregnant smokers are associated with buccal DNA methylation at 5 years of age(Springer Nature, 2024-04-25) Shorey‑Kendrick, Lyndsey E.; McEvoy, Cindy T.; Milner, Kristin; Harris, Julia; Brownsberger, Julie; Tepper, Robert S.; Park, Byung; Gao, Lina; Vu, Annette; Morris, Cynthia D.; Spindel, Eliot R.; Pediatrics, School of MedicineCorrection to: Clinical Epigenetics (2024) 16:35 10.1186/s13148-024-01644-8 Following publication of the original article [1], the authors noticed that the NCBI Gene Expression Omnibus (GEO) accession series has been incorrectly listed as GSE253158 within the “Availability of data and materials section”. The correct GEO series for this work is GSE252169.Item Improvements in lung function following vitamin C supplementation to pregnant smokers are associated with buccal DNA methylation at 5 years of age(Springer Nature, 2024-02-27) Shorey‑Kendrick, Lyndsey E.; McEvoy, Cindy T.; Milner, Kristin; Harris, Julia; Brownsberger, Julie; Tepper, Robert S.; Park, Byung; Gao, Lina; Vu, Annette; Morris, Cynthia D.; Spindel, Eliot R.; Pediatrics, School of MedicineBackground: We previously reported in the "Vitamin C to Decrease the Effects of Smoking in Pregnancy on Infant Lung Function" randomized clinical trial (RCT) that vitamin C (500 mg/day) supplementation to pregnant smokers is associated with improved respiratory outcomes that persist through 5 years of age. The objective of this study was to assess whether buccal cell DNA methylation (DNAm), as a surrogate for airway epithelium, is associated with vitamin C supplementation, improved lung function, and decreased occurrence of wheeze. Methods: We conducted epigenome-wide association studies (EWAS) using Infinium MethylationEPIC arrays and buccal DNAm from 158 subjects (80 placebo; 78 vitamin C) with pulmonary function testing (PFT) performed at the 5-year visit. EWAS were performed on (1) vitamin C treatment, (2) forced expiratory flow between 25 and 75% of expired volume (FEF25-75), and (3) offspring wheeze. Models were adjusted for sex, race, study site, gestational age at randomization (≤ OR > 18 weeks), proportion of epithelial cells, and latent covariates in addition to child length at PFT in EWAS for FEF25-75. We considered FDR p < 0.05 as genome-wide significant and nominal p < 0.001 as candidates for downstream analyses. Buccal DNAm measured in a subset of subjects at birth and near 1 year of age was used to determine whether DNAm signatures originated in utero, or emerged with age. Results: Vitamin C treatment was associated with 457 FDR significant (q < 0.05) differentially methylated CpGs (DMCs; 236 hypermethylated; 221 hypomethylated) and 53 differentially methylated regions (DMRs; 26 hyper; 27 hypo) at 5 years of age. FEF25-75 was associated with one FDR significant DMC (cg05814800), 1,468 candidate DMCs (p < 0.001), and 44 DMRs. Current wheeze was associated with 0 FDR-DMCs, 782 candidate DMCs, and 19 DMRs (p < 0.001). In 365/457 vitamin C FDR significant DMCs at 5 years of age, there was no significant interaction between time and treatment. Conclusions: Vitamin C supplementation to pregnant smokers is associated with buccal DNA methylation in offspring at 5 years of age, and most methylation signatures appear to be persistent from the prenatal period. Buccal methylation at 5 years was also associated with current lung function and occurrence of wheeze, and these functionally associated loci are enriched for vitamin C associated loci.Item Pulmonary Morbidity in Infancy after Exposure to Chorioamnionitis in Late Preterm Infants(American Thoracic Society, 2016-06) McDowell, Karen M.; Jobe, Alan H.; Fenchel, Matthew; Hardie, William D.; Gisslen, Tate; Young, Lisa R.; Chougnet, Claire A.; Davis, Stephanie D.; Kallapur, Suhas G.; Pediatrics, School of MedicineRATIONALE: Chorioamnionitis is an important cause of preterm birth, but its impact on postnatal outcomes is understudied. OBJECTIVES: To evaluate whether fetal exposure to inflammation is associated with adverse pulmonary outcomes at 6 to 12 months' chronological age in infants born moderate to late preterm. METHODS: Infants born between 32 and 36 weeks' gestational age were prospectively recruited (N = 184). Chorioamnionitis was diagnosed by placenta and umbilical cord histology. Select cytokines were measured in samples of cord blood. Validated pulmonary questionnaires were administered (n = 184), and infant pulmonary function testing was performed (n = 69) between 6 and 12 months' chronological age by the raised volume rapid thoracoabdominal compression technique. MEASUREMENTS AND MAIN RESULTS: A total of 25% of participants had chorioamnionitis. Although infant pulmonary function testing variables were lower in infants born preterm compared with historical normative data for term infants, there were no differences between infants with chorioamnionitis (n = 20) and those without (n = 49). Boys and black infants had lower infant pulmonary function testing measurements than girls and white infants, respectively. Chorioamnionitis exposure was associated independently with wheeze (odds ratio [OR], 2.08) and respiratory-related physician visits (OR, 3.18) in the first year of life. Infants exposed to severe chorioamnionitis had increased levels of cord blood IL-6 and greater pulmonary morbidity at age 6 to 12 months than those exposed to mild chorioamnionitis. Elevated IL-6 was associated with significantly more respiratory problems (OR, 3.23). CONCLUSIONS: In infants born moderate or late preterm, elevated cord blood IL-6 and exposure to histologically identified chorioamnionitis was associated with respiratory morbidity during infancy without significant changes in infant pulmonary function testing measurements. Black compared with white and boy compared with girl infants had lower infant pulmonary function testing measurements and worse pulmonary outcomes.