- Browse by Subject
Browsing by Subject "Wet age-related macular degeneration"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Mechanistic and therapeutic evaluation of a novel antiantiogenic small molecule(2016-05-24) Sulaiman, Rania S.; Corson, Timothy W.; Cummins, Theodore R.; Jerde, Travis J.; Lu, Tao; Boulton, Michael E.Choroidal neovascularization (CNV) is the vision-threatening characteristic of wet age-related macular degeneration (AMD), a major cause of blindness affecting almost 2 million elderly Americans. The current approved treatments target the dominant angiogenic mediator, vascular endothelial growth factor (VEGF). However, repeated injections of anti-VEGF drugs can cause ocular and systemic side effects, and about 30% of wet AMD patients are non-responsive. There is thus an unmet need to develop VEGF-independent antiangiogenic molecules to complement or combine with existing medications. I studied SH-11037, a novel homoisoflavonoid with potent and selective antiangiogenic activity against human retinal endothelial cells. Intravitreal SH- 11037 dose-dependently suppressed angiogenesis in the laser-induced CNV (LCNV) mouse model. These effects were prominent as early as 7 days post-laser treatment as measured by a novel ellipsoid quantification method of optical coherence tomography images in vivo. A supratherapeutic dose of 100 μM SH- 11037 was not associated with signs of murine ocular toxicity, and did not interfere with pre-existing retinal vasculature or retinal function. SH-11037 synergized with anti-VEGF therapy in vitro and in vivo, suggesting a VEGFindependent mechanism. By photoaffinity pulldown, I identified soluble epoxide hydrolase (sEH) as an SH-11037-binding target. sEH is a key enzyme in ω-3 and ω-6 fatty acid metabolism. sEH levels were dramatically upregulated in retinal sections from L-CNV mice and a specific sEH inhibitor, t-AUCB, significantly suppressed L-CNV lesion volume. Additionally, SH-11037 inhibited sEH enzymatic activity in vitro and in vivo in L-CNV mice. Given the role of sEH in the metabolism of docosahexaenoic acids (DHA), inhibition of sEH using small molecules like SH-11037 would enhance ocular DHA levels, with beneficial antiangiogenic and anti-inflammatory effects. SH-11037 is thus a novel sEH inhibitor, which could make it an alternative or additive therapy to existing anti- VEGF drugs for treatment of neovascular diseases in the eye and other tissues.